摘要:寻找新的机制解决方案以应对生物催化挑战是酶进化适应以及设计新催化剂的关键。最近人造物质被释放到环境中,为观察生物催化创新提供了动态试验场。用作杀虫剂的磷酸三酯最近才被引入环境中,而它们并没有天然对应物。为了应对这一挑战,酶已迅速进化以水解磷酸三酯,并趋向于相同的机制解决方案,即需要二价阳离子作为催化的辅助因子。相比之下,先前发现的宏基因组混杂水解酶 P91(乙酰胆碱酯酶的同源物)实现了由金属独立的 Cys-His-Asp 三联体介导的缓慢磷酸三酯水解。在这里,我们通过对 P91 进行定向进化来探究这种新催化基序的可进化性。通过将聚焦库方法与液滴微流体的超高通量相结合,我们仅通过两轮进化就将 P91 的活性提高了约 360 倍(达到 ak cat / KM ≈ 7 × 10 5 M − 1 s − 1 ),可与自然进化的金属依赖性磷酸三酯酶的催化效率相媲美。与其同源物乙酰胆碱酯酶不同,P91 不会遭受自杀抑制;相反,快速的去磷酸化速率使共价加合物的形成而不是水解速率成为限制因素。定向进化改进了这一步骤,中间体的形成速度提高了 2 个数量级。将聚焦的组合库与液滴微流体的超高通量相结合,可以用于识别和增强自然界中尚未达到高效率的机制策略,从而产生具有新型催化机制的替代试剂。■ 简介
高纯度的合成 DNA 序列对于开发和实施用于反义或 RNA 干扰疗法的安全有效的核酸药物至关重要。污染合成核酸序列的最主要杂质包括部分 5'- O 保护和/或 5'- O 未加帽的 DNA 序列,这些杂质导致在固相制造这些生物分子期间产生比全长序列更短的序列。1 已经开发并实施了一种固相纯化工艺,以近乎定量地消除污染合成 DNA 序列的比全长序列更短的 DNA 序列。2-4 具有末端酮功能的 5 '-硅氧基醚接头被转化为亚磷酰胺衍生物,用于任何 DNA 序列固相组装的最后偶联步骤。接头的酮功能允许通过形成肟功能将感兴趣的 DNA 序列锚定到氨基氧基官能化的硅胶载体上。本文报道了一种基于使用 1,4-脱水-D-核糖醇作为起始材料的策略,该策略能够:(i) 将其与合成 DNA 序列的 5'-羟基结合,以及 (ii) 将新形成的结合物从固相合成载体释放后固定在捕获固体载体上。必须将 DNA 序列结合物化学选择性固定在这种固体载体上,以便通过洗去捕获载体,丢弃在固相合成过程中固有形成的未结合的短于全长的 DNA 序列,这些序列与所需的 DNA 序列结合物一起从合成载体上释放。1,4-脱水-D-核糖醇实体还被设计为能够释放捕获的 DNA 序列,作为 5'-未磷酸化的 DNA 序列,大概是通过末端乙基磷酸三酯功能的分子内酯交换实现的。