+第一磷酸盐的目标是成为北美最新的磷酸盐生产国,并且是唯一一个完全朝向磷酸锂(LFP)电池格式 +磷酸锂电池的完全取向的,这是EV空间中的“新孩子”的升起的“新孩子”,这种格式已经在较大的汽车上均具有较大的汽车 +较大的汽车渗透率,例如较大的汽车,例如,曾经在较大的汽车上使用,并且在诸如较大的汽车上,曾经在较大的汽车上使用过,并且曾经在诸如较大的车辆中使用过,并且曾经使用过。 Bégin-Lamarche项目已成为发展优先级的首要位置 +Bégin-Lamarche项目(BLM)具有出色的访问/基础设施,并且在战略上位于ST Lawrence上的Saguenay港口附近北美,欧洲和澳大利亚在LFP Space +的A磷酸盐处理器和技术合作伙伴的A列表该公司已获得了第一个为在商业规模上生产电池前体材料PCAM准备的Saguenay设施
无机磷酸盐(P I)是生命的必需分子之一。然而,对动物组织中的细胞内P I代谢和信号传导知之甚少。在观察到慢性P I饥饿会导致果蝇的消化性上皮中引起过度增殖,我们确定P I饥饿会触发P I Transporter PXO的下调。与P I饥饿一致,PXO缺乏引起中肠过增高。有趣的是,免疫染色和超微结构分析表明,PXO特异性标记了非典型的多层细胞器(PXO主体)。此外,通过使用Förster共振能量转移(FRET)P I传感器2进行P i成像,我们发现PXO限制了胞质P I水平。PXO身体需要PXO进行生物发生,并在P I饥饿后发生降解。PXO体的蛋白质组学和脂质组表征揭示了其独特的特征,作为细胞内P I储备。因此,P I饥饿会触发PXO下调和PXO体降解,作为增加胞质P I的补偿机制。最后,我们将激酶的连接器与AP-1(CKA)(CKA)(CKA)和JNK信号3的一个组件(CKA)确定为PXO敲低或P I饥饿诱导的高增殖的介体。总的来说,我们的研究将PXO体作为胞质P I水平的关键调节剂,并鉴定出P i依赖性的PXO – CKA – JNK信号传导控制组织稳态。
这是我们公司的第一个公开股票股票,股票股票没有正式市场。股票股票的面值为r.10/ - 。The Floor Price, the Cap Price and the Issue Price to be determined by our Company in consultation with the Book Running Lead Manager, in accordance with the SEBI (ICDR) Regulations, 2018 and on the basis of the assessment of market demand for our Equity Shares by way of the Book Building Process, as disclosed in “Basis for Issue Price” on page 107 or in case where, Price Band is not disclosed otherwise, will be advertised in two national daily newspapers (one each in English and in印地语)至少在出价 /发行日期之前的两个工作日内,有一个每日发行的印地语区域报纸,并在列出了股票股票股票后的股票股票上市价格。对于股票股票的积极或持续交易或上市后交易股权交易的价格,没有任何保证。
工业化和城市化的加速度将不可避免地导致HMS污染进入环境。尤其是在农业环境中,农业,施肥,灌溉和其他农业活动可能导致土壤中的HM浓度高,导致大多数HMS变得更加活跃,因此不可避免地会被农作物吸收(Dalcorso等,2013)。HMS由于其高毒性,隐藏性和团聚而成为作物影响最严重的污染物之一。hms可以通过抑制酶功能,破坏核酸结构并干扰植物营养素的摄取,从而对作物的生长,生物量和光合作用产生负面影响,从而对可持续食品产生构成威胁。此外,土壤中HMS的高含量也是农产品安全的挑战。过度摄入含有HM的食物会对人类健康造成不可逆转的伤害(Qin等,2021)。根际是植物吸收养分和微量元素的关键,它是土壤植物 - 微生物相互作用的界面。土壤中的重金属离子必须通过植物根部进入植物的体内。作为与植物最近的邻居,根微生物通过参与土壤腐殖质的形成和转化,土壤中养分的循环等,改善土壤结构和土壤肥力。同时,根微生物还可以分泌植物激素,以促进农作物对养分的吸收和利用,并增加农作物的根生长和生物量(Etesami和Maheshwari,2018; Manoj等,2020)。然而,高浓度的HM会通过诱导微生物代谢性疾病来引起非生物压力(Wyszkowska等,2013),例如蛋白质变性,细胞膜瓦解,改变酶特异性酶,特异性酶,破坏细胞功能和DNA结构(Abdu等,2017年的结构;微生物社区。值得注意的是,由HMS压力引起的根微生物结构和数量的变化可以严重影响根系的生态平衡,从而导致农作物生长的下降和农产品的质量(Shen等,2019)。因此,为了确保粮食安全和人类健康,迫切需要寻求适当的措施(土壤改善和微生物社区法规),以补救农田土壤中的HMS污染。
磷是一种矿物质,主要以固体形式存在于土壤中,植物不易吸收和利用。这是因为它与土壤中的其他元素形成了强键,形成了一种不易溶于水的化合物。因此,磷溶性微量元素作为改善植物缺磷的替代解决方案长期以来被研究。这项研究的重点是评估这些微量营养素对大豆生产的有效性,因为埃塞俄比亚存在大面积酸性土壤,所以植物不易吸收磷。为了进行这项研究,我们在实验室中从大豆根部土壤中分离出五种磷溶性微量元素。人们已经研究了这些微量元素溶解与钙、铁和铝形成化合物的磷的能力。此外,利用特定的基因片段(16S-23S rRNA 区域)来识别微生物的种类。目前已在田间六个地点研究了这些微量营养素产量的潜在增长。研究证实该微量元素具有从钙、铁、铝化合物中除去磷的作用。另外,在研究微生物的遗传学时,发现1种属于假单胞菌属微生物,4种属于芽孢杆菌属。田间产量评估研究表明,在已鉴定的微生物中,假单胞菌属微生物(指定为 EPS1)与固氮微生物(慢生根瘤菌,MAR 1495)可使大豆产量平均提高 17.2%。这比我们将推荐量的一半磷与上述富氮肥料混合所获得的产量增加还要多。这项研究表明,应选择并充分研究磷溶性微量营养素,以提高植物对磷的利用率。
收到日期 2022-12-29,修改日期 2023-05-17,接受日期 2023-06-05 摘要 课题描述:在农业中,使用有益微生物作为生物防治剂被认为是对抗作物病害和农药抗性的生态替代方案。链霉菌属及其代谢物作为控制各种真菌植物病原体的有效药剂具有巨大的开发潜力。目的:从阿尔及利亚西部未开发的森林土壤中分离出一株放线菌。对分离菌株进行了针对植物病原真菌的体外抗真菌特性测试:从小麦植物茎中分离的黄曲霉、赭曲霉、寄生曲霉、扩展青霉和禾谷镰刀菌,以及磷酸盐溶解特性。方法:根据形态学、生理生化数据及16s rRNA基因测序,将该放线菌鉴定为加利拉链霉菌(Streptomyces galilaus)。使用不同的溶剂进行提取,并评估每种溶剂提取物的活性。采用琼脂孔扩散法测定粗提取物的抗真菌活性。结果:提取物 ext 5254 T002 和 ext 5294 T002 对所测试的五种真菌中的三种(赭曲霉、扩展青霉和禾谷镰刀菌)均表现出强的抗真菌活性。液相色谱和质谱 (HPLC/MS) 分析表明,提取物 5254 T002 中含有杀菌素 B 和一些链霉菌素与阿克拉霉素的混合物,而提取物 5294 T002 中的主要成分为布兰查醌。发现菌株T002具有溶解不溶性磷酸盐的能力。结论:结果表明,从森林土壤中分离出的链霉菌 T002 对导致小麦致病并在其自然栖息地之外溶解不溶性磷酸盐的真菌表现出良好的生物防治能力。关键词:链霉菌T002;抗真菌活性;磷酸盐的溶解;生物防治。
在多磷酸盐肥料中的农业用途,链式聚合物中存在P的一半至四分之三。剩余的P(正磷酸)可立即用于植物摄取。聚合物磷酸盐链主要被土壤微生物和植物根产生的酶分解为简单的磷酸分子。某些多磷酸盐将在没有酶的情况下分解。在潮湿,温暖的土壤中,酶活性更快。通常,一半的聚磷酸化合物在一两个星期内转化为正磷酸盐。在凉爽和干燥的条件下,转换可能需要更长的时间。由于多磷酸盐肥料均包含正磷酸盐和多磷酸盐的组合,因此植物能够非常有效地使用该肥料来源。大多数含P的液化剂中含有多磷酸铵。液化肥料通常用于生产农业,但并未被房主广泛使用。流体对于农民来说很方便,因为它们可以很容易地与许多其他营养物质和化学物质混合在一起,并且每滴液体都是完全相同的。在大多数情况下,决定使用干燥或液体肥料的决定是基于营养,肥料处理偏好和现场实践的价格,而不是重大的农艺差异。
许可证:尼日利亚开放期刊的这项工作是根据创意共享归因许可证4.0国际许可证的许可和发布的,该许可证允许在任何媒介中不受限制地使用,分发和复制,只要本文得到适当的引用。版权所有:作者完全保留了本已发表文章的版权。开放访问:作者批准本文在开放访问(OA)模型中永久在线。QA:本文与“ COPE(出版道德委员会)和PIE(出版完整性与道德)一致。
磷营养很长时间以来一直在影响植物的花卉转变,但潜在的机械主义尚不清楚。拟南芥磷酸转运蛋白磷酸盐1(PHO1)在从根到芽的磷酸转移中起关键作用,但是它是否以及如何调节花卉转变是未知的。在这里,我们表明PHO1的敲除突变延迟在长期和短期条件下开花。Pho1突变体的晚开花可以通过玫瑰花结或射击顶点的Pi补充来部分挽救。嫁接测定法表明,PHO1突变体的晚开花是磷酸盐从根到芽的磷酸易位受损的结果。SPX1和SPX2的基因敲除突变,这是两个磷酸盐饥饿反应的两个负调节剂,部分挽救了PHO1突变体的晚期流动。pho1在开花时间调节中对Pho2(Pho2的负调节剂)表示同义。损失PHO1会抑制某些花卉激活剂的表达,包括编码佛罗里语的FT,并在芽中诱导某些花卉阻遏物的表达。遗传分析表明,至少对于PHO1突变体的晚开花,至少部分缩进的茉莉酸信号传导。此外,我们发现pho1的水稻pho1; 2,Pho1的同源物在花卉过渡中起着类似的作用。这些结果表明PHO1整合了磷营养和开花时间,并且可以用作调节植物中磷营养介导的开花时间的潜在目标。
1.7 随后,报告考虑了与工作组职责相关的数据来源。第 6 章描述了个人在个人证词中提供的信息,以及与 OP 信息网络和农药暴露患者小组所掌握的数据有关的信息。许多人报告患有长期疾病,通常严重影响正常生活,他们认为这是由于接触 OP 引起的。还考虑了不良反应计划(卫生与安全执行局的农药事件评估小组;兽医药品管理局的疑似不良反应监测计划;药品管理局的黄牌计划)提供的数据和国家毒物信息服务的数据。然而,这些资料对于工作组的职责而言价值非常有限。结果是工作组无法利用任何大量的临床数据。因此,工作组面临着一个重大问题。虽然提交证据的许多人报告了非常真实的、令人痛苦的疾病,通常以不寻常的症状组合为特征,但很少有人能提供长期的医疗观察或支持性临床数据。许多人认为他们的问题没有得到充分的监测和调查。个案报告很有启发性,但不能用来评估因果关系。