+第一磷酸盐的目标是成为北美最新的磷酸盐生产国,并且是唯一一个完全朝向磷酸锂(LFP)电池格式 +磷酸锂电池的完全取向的,这是EV空间中的“新孩子”的升起的“新孩子”,这种格式已经在较大的汽车上均具有较大的汽车 +较大的汽车渗透率,例如较大的汽车,例如,曾经在较大的汽车上使用,并且在诸如较大的汽车上,曾经在较大的汽车上使用过,并且曾经在诸如较大的车辆中使用过,并且曾经使用过。 Bégin-Lamarche项目已成为发展优先级的首要位置 +Bégin-Lamarche项目(BLM)具有出色的访问/基础设施,并且在战略上位于ST Lawrence上的Saguenay港口附近北美,欧洲和澳大利亚在LFP Space +的A磷酸盐处理器和技术合作伙伴的A列表该公司已获得了第一个为在商业规模上生产电池前体材料PCAM准备的Saguenay设施
真菌对磷酸盐的溶解是陆地生态系统养分循环的重要过程,尤其对于植物生长发育必需的元素磷的可用性而言。磷通常以不溶性形式存在于土壤中,例如铁、铝和钙的无机磷酸盐,这限制了植物根部对其的吸收。然而,磷酸盐溶解真菌能够通过分泌有机酸和磷酸酶将可用的磷酸盐释放到环境中,将这些不溶性形式转化为植物可利用的磷酸根离子。该机制不仅在植物营养方面发挥着关键作用,而且在陆地生态系统的可持续性方面也发挥着关键作用,有助于有效的磷循环和提高农业生产力。本研究的目的是通过巴西亚马逊西部微生物收集中心的三种具有散生菌目形态特征的真菌菌株,对不同磷酸盐源的溶解能力进行分子鉴定和表征。首先,重新激活这些细胞系,并使用 2% CTAB 方法进行 DNA 提取。接下来,进行 CaM(钙调蛋白)区域的扩增,作为物种鉴定的分子标记,然后进行测序和系统发育分析。为了确保分析的稳健性,基于相关物种序列的比对,采用了最大似然法,并进行了 1000 次重复。为了评估无机磷酸盐的溶解潜力,在含有三种不同形式的不溶性磷酸盐的培养基中对分离物进行体外定性测试:磷酸铁(FePO₄)、磷酸铝(AlPO₄)和磷酸钙(Ca₃(PO₄)₂)。将真菌在28°C的恒温下培养四天。磷酸盐的溶解度通过溶解指数来量化,该指数是一个参数,表示真菌在培养基中在其菌落周围产生溶解晕的能力。该指数是根据溶解晕的直径与真菌菌落直径的比率计算得出的。系统发育分析证实,所研究的三种菌株属于 Talaromyces sayulitensis 种。在进行的测试中,Talaromyces sayulitensis 菌株表现出溶解不同来源的无机磷酸盐的高潜力,在所有测试介质中呈现溶解晕。在含有磷酸铝(AlPO₄)的培养基中观察到最高的溶解率。这些结果表明,Talaromyces sayulitensis 具有显著的溶解各种形式磷酸盐的能力,作为一种有前途的生物技术工具,它可以提高贫瘠土壤中磷的利用率,促进植物生长,并有助于可持续农业实践。
本演讲中包含的信息是由第一磷酸盐公司(“公司”,“我们”,“我们”或“我们的”)编写的,并包含与公司的企业,资产,运营,资本,资本,管理和前景有关的机密信息。本演示文稿仅供您提供信息,并且不得全部或部分地以任何形式或转发或进一步传播给任何其他人。全部或部分的任何转发,分布或复制都是未经授权的。通过接受和审查此演示文稿,您承认并同意(i)维持此演示文稿的机密性,以及本文所包含的信息,(ii)以相同的方式保护此类信息,您可以保护自己的机密信息,这至少应是合理的护理标准,并且(iii)不利用本文的任何直接投资或求助于您的评估或求解。
虽然已经对骨质质量进行了几项研究[4-7],但很少有人专注于XLH儿童的腿几何和骨盆的骨骼几何形状和骨盆。骨畸形目前是通过临床测量间距离距离(ICD)和肌间距离(IMD)和常规2D射线照相[2-5]评估的。这提供了有关畸形的一般信息,特别是在额叶平面(varus/valgu s)和矢状平面(Flessum/recurvatum)中。虽然ICD和IMD测量值对临床医生的前瞻性监测有用,但它们不是很可重复[3] [8]。还使用了两个分数来评估2D X光片上的RITCETS。用于与缺乏症相关的鼠的Thacher评分分析了腕部生长板的变化,并以1至10的尺度分析膝盖[9]。“放射线全球变化印象”从–3到+3的额定值,评估了腿部畸形和在相隔3个月相隔3个月间拍摄的两个X光片之间的RICKETS病变的进展[7]。,但这两个分数不是定量的,并且基于主观评估。此外,使用2D图像研究复杂的三维(3D)畸形会受到投影偏差的影响[10-11]。
抽象动机:核糖核苷单磷酸盐(RNMP)是嵌入基因组DNA中的最丰富的非标准核定体。如果无法控制DNA中RNMP的存在,则可能导致基因组不稳定性。DNA中RNMP的实际正函数主要未知。考虑到RNMP嵌入与各种疾病和癌症之间的关联,近年来,DNA中RNMP的嵌入现象已成为近年来的重要研究领域。结果:我们介绍了RNMPID数据库,这是第一个揭示RNMP插入特征,链偏置和首选掺入模式的数据库,这些数据库是来自不同遗传背景的细菌至人类细胞的基因组DNA中的首选掺入模式。RNMPID数据库使用不同RNMP映射技术的数据集。它为研究人员提供了坚实的基础,以阐明多种来源的基因组DNA中嵌入的RNMP的特征及其与细胞功能的关联,以及将来的疾病。它还显着使研究人员在遗传学和基因组学领域的研究人员旨在将研究与RNMP嵌入数据融为一体。可用性:RNMPID可以在网络上自由访问,网址为https://www.rnmpid.org。联系人:xph6113@gmail.com或storici@gatech.edu
在ER掺杂的磷酸盐玻璃中淬灭,用于紧凑的光激光器和放大器 / Pugliese,迭戈; Boetti,Nadia Giovanna; Lousteau,J。; Ceci Ginistrelli,Edoardo; Bertone,Elisa; Geobaldo,Francesco;米兰,丹尼尔。- 在:合金和化合物杂志。- ISSN 0925-8388。-657:(2016),pp。678-683。[10.1016/j.jallcom.2015.10.126]
在没有全身性钙和磷酸盐失衡的情况下,基底神经节中脑微血管的抽象钙化是原发性家族性脑钙化(PFBC)的标志,这是一种罕见的神经退行性疾病。在钠依赖性磷酸磷酸转运蛋白2(SLC20A2),异形和多层逆转录病毒受体1(XPR1),血小板衍生的生长因子B(PDGFB),血小板生长因子受体β(PDGFRB),脑质量发生的gylasise(PDGFB)的基因(pDGFB),脑料beta和脑电图调节(XPR1)的反应(PDGFB)调节gycose(pDGFB),已知分子2(JAM2)引起PFBC。 XPR1的功能丧失突变是Meta-Zoans中唯一已知的无机磷酸盐出口剂,引起了主要遗传的PFBC,但在2015年首次报道,但到目前为止,在大脑中,尚无研究的研究是否尚未解决一种功能等位基因的损失,是否导致一种常用的生物体(一种对人类疾病模拟人类疾病的常用生物体)的病理学改变。 在这里我们表明,用于XPR1的小鼠(XPR1 WT/LACZ)的杂合子存在脑脊液中的无机磷酸盐水平,以及丘脑中血管钙化的年龄和性别依赖性生长。 血管钙化被血管基底膜包围,位于平滑肌层的小动脉。 与先前特征的PFBC小鼠模型相似,XPR1 WT/LACZ小鼠中的血管钙化含有骨基质蛋白,并被反应性星形胶质细胞和小胶质细胞包围。 但是,小胶质细胞激活不仅限于钙化血管,而是显示出广泛的存在。 除了血管钙化外,我们还观察到血管在钠依赖性磷酸磷酸转运蛋白2(SLC20A2),异形和多层逆转录病毒受体1(XPR1),血小板衍生的生长因子B(PDGFB),血小板生长因子受体β(PDGFRB),脑质量发生的gylasise(PDGFB)的基因(pDGFB),脑料beta和脑电图调节(XPR1)的反应(PDGFB)调节gycose(pDGFB),已知分子2(JAM2)引起PFBC。XPR1的功能丧失突变是Meta-Zoans中唯一已知的无机磷酸盐出口剂,引起了主要遗传的PFBC,但在2015年首次报道,但到目前为止,在大脑中,尚无研究的研究是否尚未解决一种功能等位基因的损失,是否导致一种常用的生物体(一种对人类疾病模拟人类疾病的常用生物体)的病理学改变。在这里我们表明,用于XPR1的小鼠(XPR1 WT/LACZ)的杂合子存在脑脊液中的无机磷酸盐水平,以及丘脑中血管钙化的年龄和性别依赖性生长。血管钙化被血管基底膜包围,位于平滑肌层的小动脉。与先前特征的PFBC小鼠模型相似,XPR1 WT/LACZ小鼠中的血管钙化含有骨基质蛋白,并被反应性星形胶质细胞和小胶质细胞包围。但是,小胶质细胞激活不仅限于钙化血管,而是显示出广泛的存在。除了血管钙化外,我们还观察到血管
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P
1。Zho,J.H。; Rossi,J。Nat。 修订版 Discov。 2017,16,(3),181-202。 2。 我们,s。; Z. Pan,Y。;是的,y。 li,f。; Liu,J。; Wang,L。; Wu,X。;仪式。; Wan,Y。;张,L。; Yang,Z。;张,B.-T。; lu,a。;张,G。Acs苹果。 mater。 接口2021,13,(8),9500-9519。 3。 Hollen,M。Curr。 opine。 化学。 大。 2019,52,93-101; Freed,n。; Fürst,M。J. J.;希望,P。Current。 opine。 生物技术。 2022,74,129-136; Huang,P.J。; Liu,J。W. 2020,9,(10),1046-1 4。 Ellington,A。D。;自然1990,346,818-822;罗伯茨,D。L。;乔伊斯(Joyce),自然1990,344,467-468;伍德,c。 Gold,L.Science 1990,249,505-5 5。 ren,q。; Ga,L。; lu,Z。; AI,J。; Wang,T。Mater。 化学。 正面。 2020,4,(6),1569-1585;对,c。; Kakoti,A。; Mayer,G。Angew。 化学。 他们。 ed。 2020,59,(50),22414-22418; Liu,C.-G。;王,Y。; Liu,P。; Yao,Q.-L。;周,Y.-Y. ; Li,C.-F。; Zhao,q。; Liu,G.-H。;张,X.-L。 ACS化学。 大。 2020,15,(6),1554-1565;张,L。;李,l。; Wang,X。; Liu,H。;张,Y。; Xie,T。;张,h。 li,x。; Peng,T。;太阳,x。 Dai,J。; Liu,J。; Wu,W。;是的火,W。Mol。 ther。 尼西亚采集Zho,J.H。; Rossi,J。Nat。修订版Discov。2017,16,(3),181-202。2。我们,s。; Z. Pan,Y。;是的,y。 li,f。; Liu,J。; Wang,L。; Wu,X。;仪式。; Wan,Y。;张,L。; Yang,Z。;张,B.-T。; lu,a。;张,G。Acs苹果。mater。接口2021,13,(8),9500-9519。3。Hollen,M。Curr。opine。化学。大。2019,52,93-101; Freed,n。; Fürst,M。J. J.;希望,P。Current。opine。生物技术。2022,74,129-136; Huang,P.J。; Liu,J。W. 2020,9,(10),1046-14。Ellington,A。D。;自然1990,346,818-822;罗伯茨,D。L。;乔伊斯(Joyce),自然1990,344,467-468;伍德,c。 Gold,L.Science 1990,249,505-5 5。 ren,q。; Ga,L。; lu,Z。; AI,J。; Wang,T。Mater。 化学。 正面。 2020,4,(6),1569-1585;对,c。; Kakoti,A。; Mayer,G。Angew。 化学。 他们。 ed。 2020,59,(50),22414-22418; Liu,C.-G。;王,Y。; Liu,P。; Yao,Q.-L。;周,Y.-Y. ; Li,C.-F。; Zhao,q。; Liu,G.-H。;张,X.-L。 ACS化学。 大。 2020,15,(6),1554-1565;张,L。;李,l。; Wang,X。; Liu,H。;张,Y。; Xie,T。;张,h。 li,x。; Peng,T。;太阳,x。 Dai,J。; Liu,J。; Wu,W。;是的火,W。Mol。 ther。 尼西亚采集Ellington,A。D。;自然1990,346,818-822;罗伯茨,D。L。;乔伊斯(Joyce),自然1990,344,467-468;伍德,c。 Gold,L.Science 1990,249,505-55。ren,q。; Ga,L。; lu,Z。; AI,J。; Wang,T。Mater。化学。正面。2020,4,(6),1569-1585;对,c。; Kakoti,A。; Mayer,G。Angew。化学。他们。ed。2020,59,(50),22414-22418; Liu,C.-G。;王,Y。; Liu,P。; Yao,Q.-L。;周,Y.-Y.; Li,C.-F。; Zhao,q。; Liu,G.-H。;张,X.-L。 ACS化学。大。2020,15,(6),1554-1565;张,L。;李,l。; Wang,X。; Liu,H。;张,Y。; Xie,T。;张,h。 li,x。; Peng,T。;太阳,x。 Dai,J。; Liu,J。; Wu,W。;是的火,W。Mol。ther。尼西亚采集