生物相容性在藻酸盐3D支架钙磷酸钙(β-CPP)陶瓷中的影响。G. C. Pinto,R。D. Piazza,I。P. M. Soares,A。F. Cunha,C。Anselmi,M。B. Oliveira,C。A. Costa,A。C. Costa,A。C. Guastaldi,N。J. O.和Silva Costa和Silva Costa,silva Costa,Antonio C. Guastaldi,Antonio C. Guastaldi,Nuno Jojo O. e Silva。Costa,Antonio C. Guastaldi,NunoJoãoO。和Silva
生物材料形成的研究越来越有助于设计出应对现代材料科学挑战的新型先进物质。我的研究重点是研究磷酸钙 (CaP) 的生物矿化,并利用其原理设计具有定制特性的生物启发式 CaP 纳米粒子。我将介绍我的基础研究,即使用模拟骨形成的生物矿化方法形成无定形和结晶 CaP。与这些工作相关,我将展示我的应用研究成果,即合理设计 CaP 纳米粒子,用于医学(治疗心血管疾病、抗生素耐药性感染和龋齿)、环境和农业(智能肥料、废料回收)以及工业(化妆品和催化新材料)。
近几十年来,牙科材料出现了,其生物学特性得到了增强。牙科材料的主要特性是它们应该与口腔液体(如唾液和龈沟液)相容。在存在这些生物因素的情况下,它们的功能应该得到增强。在探索创新材料方面取得的科学进步使得使用对其所处环境反应更动态的材料有可能获得有益的结果。目前可用的牙科材料是即兴的。智能复合材料、智能陶瓷、复合体、树脂改性玻璃离子、释放无定形磷酸钙 (ACP) 的窝沟封闭剂以及其他智能钻头和正畸形状记忆合金等修复材料都受益于智能材料在牙科中的使用。
当前的牙科材料即兴创作,使其更聪明。使用这些智能材料,例如智能陶瓷,智能复合材料,无定形磷酸钙释放坑和填充密封剂,组合物,树脂模型的玻璃电离等等。以及其他材料,例如智能印象材料,正畸形状的内存合金,智能缝合力,智能毛刺等。彻底改变了牙科。对理想修复材料的追求导致发现了一种新一代的牙科材料,被称为智能材料。这些材料称为智能,因为它们可以通过压力,温度,pH,水分,电或磁场等刺激来改变。这些智能材料在提高效率方面具有未来,并标志着智能牙科中新一代或时代的开始。本评论文章的目的是审查有关智能材料及其分类,牙科复合树脂及其历史背景,智能复合材料,智能单色复合材料的审查。
羟基磷灰石 (Ca 10 (PO 4 ) 6 (OH) 2 ) 是一种磷酸钙生物材料,是处理空气、水和土壤污染的非常有前途的材料。事实上,羟基磷灰石 (Hap) 在环境管理领域非常有用,部分原因在于它特殊的结构和吸引人的性能,例如其强大的吸附能力、酸碱可调性、离子交换能力和良好的热稳定性。此外,Hap 能够构成一条有价值的资源回收途径。本综述的第一部分将致力于介绍 Hap 的结构并定义使其可作为环境修复材料的属性。第二部分将重点介绍其作为废水和土壤处理的吸附剂的用途,同时指出该修复过程所涉及的机制。最后,最后一部分将介绍 Hap 在催化领域应用的所有发现,无论是作为催化剂、光催化剂还是活性相载体。因此,以上所有内容都展示了在空气、水和土壤清洁中使用羟基磷灰石所带来的好处。
o基于钙的:磷酸钙,β-三磷酸二磷酸钙,羟基磷灰石o基于硅的硅:生物活性玻璃O合成聚合物(例如cortoss(PMMA))•组合产品:不同的骨移植产物/替代品相结合,以增强骨传导性,骨诱导和成骨特性。•脱矿质骨基质(DBM):使用骨基质的酸提取从尸体骨产生。此过程可去除钙和磷酸盐,同时离开细胞外基质(胶原蛋白和非结构性蛋白质,包括生长因子,例如骨形态发生蛋白)。dbm通常与自体移植和/或同种异体移植物结合使用。•纳米骨移植:合成移植物质具有改变纳米结晶表面特性。•异种移植:由人类材料以外的其他骨移植替代品(例如牛,珊瑚)。调节状况许多骨移植替代产品受美国食品和药物管理局(FDA)的调节。例如,非结构性同种异体移植和同种异体移植物材料被认为是人类细胞,组织和细胞组织的产物,因此不需要FDA临床前或临床数据。合成骨移植物和脱矿质骨基质(DBM)被认为是II类材料,属于FDA 510(k)调节过程,并且在批准后被认为与其他用于相同目的的市场设备/材料“实质上相同”。医疗政策声明在满足医疗标准时,将使用骨移植/替代品的使用被认为是为了促进骨骼愈合。其他材料,例如被认为是药物磁盘组合的材料需要预批准(PMA); FDA PMA批准需要在PMA申请之前进行研究设备豁免临床试验(Abjornson等,2018)。包容性和排除指南包含:A。在满足以下所有过程时,在下面列出的骨移植/替代物的使用被认为是促进骨骼愈合的:
沉积单钠和焦磷酸钙(MSU和CPP)微晶体负责痛风和软骨钙化中的疼痛和复发性炎症。在这些病理学中,炎症反应是由于巨噬细胞的激活引起的,负责释放包括IL-1β在内的各种细胞因子。IL-1β的成熟是由多蛋白质NLRP3插度介导的。在这里,我们发现晶体通过晶体的激活和IL-1β的同时产生的激活取决于细胞体积通过激活OSMO敏感的LRRC8阴离子通道的调节。LRC8的药理抑制和遗传沉默消除了晶体在体外和晶体诱导的胞内肿块模型中的浮游性激活。MSU/CPP晶体暴露时LRRC8激活诱导ATP释放,P2Y受体的激活和NLRP3炎性流向膜体激活和IL-1β成熟所必需的细胞内钙升高。在关节晶体诱导的炎症的背景下,我们确定了LRRC8 OSMO敏感的阴离子Channels具有病理生理相关性的功能。
教学大纲 模块一 生物材料-定义-分类-金属-陶瓷-聚合物,复合材料-来源,应用,优点和局限性 [6] 模块二:金属和合金-不锈钢,CO 基合金,钛和钛基合金和牙科金属的腐蚀和治疗,陶瓷-氧化铝,磷酸钙,玻璃-陶瓷,碳的制造和物理性质,陶瓷的劣化 [10] 模块三 聚合物植入材料-聚酰胺,PE,PP,聚丙烯酸酯,生物材料的结构,性质和应用-蛋白质,多糖,组织的结构和性质关系-矿化组织,富含胶原蛋白的组织和弹性组织 [8] 模块四 软组织替代品-皮肤植入物-缝合线,组织粘合剂,经皮装置,人造皮肤,颌面植入物,耳和眼植入物,血管植入物,心肺辅助装置,人工肾透析膜 [8]模块 V 硬组织替代物——长骨修复——金属丝、针、螺钉、骨折板、牙种植体、关节置换——膝关节和髋关节——结构材料、局限性 [8]