压力传感器在可穿戴电子设备和电子皮肤中充当核心组件时,已经获得了更广泛的市场。为了实现高性能柔性压力传感器,研究人员对传感器材料,结构和设备设计进行了创新研究。聚(3,4-乙二醇二噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)是一种广泛使用的导电聚合物,由于其异常电导率,易于处理,易于处理和生物相容性,因此引起了相当大的关注。作为一种多功能且灵活的功能,PEDOT:PSS可以将其发展为各种形式,对新兴的传感应用具有重要意义。本文概述了使用PEDOT:PSS的最新进步:用于灵活的压电传感器的PSS,同时还讨论了其在此类传感器中的应用以及用于提高其性能的方法和机制。
虽然Alox 2290AS是一个不错的产品,但Triiso认为来自RBM Chemical的RP-721是一个更好的选择。RP-765是基于磺酸钠的可乳化的防锈剂。RP-721用于乳化金属加工液(以前称为可溶油)浓缩物以及金属加工应用中。RP-721 PROD ID在可乳化的金属加工液配方中具有出色的腐蚀保护,该制剂含有高磺酸盐含量或高肥皂含量。在金属加工应用中,RP-721在油,溶剂或乳化水中稀释时,对盐和潮湿环境提供腐蚀保护。然后可以通过刷子,喷雾或浸入施用所得的防锈剂。RP-721通常在可乳化的防锈剂中使用20-30%,在油或溶剂中稀释时为5-30%,在可乳化的金属加工流体浓缩液中使用1-10%。RP-721作为低粘度流体提供。
摘要 本文报告了使用 COMSOL Multiphysics 对一氧化碳气体传感器的模拟,其所用的活性传感材料是碳纳米复合材料(即 0.1 wt% 的单壁碳纳米管以及 PEDOT:PSS(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐))以 1:1 的等体积比。鉴于开发这些传感器的成本高昂,必须建立一个经济地预测其行为的数学模型。使用 COMSOL Multiphysics 进行模拟,通过高斯脉冲进料口引入浓度范围为 1 至 7 ppm 的一氧化碳气体来获得传感器的表面覆盖率。在给定的浓度范围内,可以实现 14% 至 32.94% 范围内的表面覆盖率,从而给出在给定时间内吸附到传感材料表面的气体分子量的信息。使用纳米复合材料可以增强传感器的表面覆盖率,从而提高传感器的灵敏度气体传感器。
对于非线性光学材料作为有效的宽带Terahertz(THZ)波发电机,在THZ频率范围内具有较大透明度的低吸收器非常重要。在这项研究中,我们报告了有效的有机THZ波发电机,2-(4-羟基霉菌 - 霉菌)-1-甲基喹啉4-溴苯磺酸盐(OHQ-BBS)单晶。有趣的是,OHQ-BBS晶体在THZ频率区域的无分子振动模式范围从1.7到5.1 THz,吸收系数<20 mm-1。通过光学整流使用1300 nm波长的130 FS泵脉冲,OHQ-BBS晶体在1.2-5.5 THz的范围内生成极宽,无凹坑的THZ波。此外,还达到了从广泛使用的Znte无机晶体产生的场高20倍的THZ电场。因此,OHQ-BBS单晶是多个THZ光子应用的高度有希望的材料。
一般历史 作为一种新兴的化学品,PFAS 化合物是相对较新的。这些化合物是在 20 世纪 30 年代发现的,制造始于 20 世纪 40 年代。PFAS 的常见子集化学品是全氟辛酸 (PFOA) 和全氟辛烷磺酸盐 (PFOS)。PFAS 目前用作许多消费品的涂层,例如地毯上的防污涂层、炊具上的不粘涂层、披萨盒和微波爆米花袋。由于行业和监管机构担心 PFOA 和长链 PFAS 对人类健康和环境的影响,美国开始逐步淘汰某些长链 PFAS。其中包括对其持久性、在环境和普通人群血液中的存在、在人体内的长半衰期以及对实验动物的发育和其他不利影响的担忧。2000 年 5 月,3M 宣布自愿逐步淘汰八种碳基化学品。这一淘汰计划于 2002 年完成。
摘要 电活性聚合物的驱动和传感应该是柔性 MEMS 的一个机会,但它们的微加工和集成仍不成熟。人们仍期待一些创新材料和微加工工艺。本文首次全面阐述了聚合物微传感器 (MT),包括集成和操作。制造工艺依赖于市售的聚(3,4-乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)导电墨水,涂在柔性 SU-8 光刻胶微芯片上。演示了由不同形状的可单独寻址 MT 组成的复杂柔性单片单元的批量制造。所得聚合物 MT 在露天表现出非常有前途的弯曲驱动和应变传感特性。值得注意的是,与用激光切割制造的材料相比,微加工工艺对性能没有影响。这项工作为柔性 MEMS 的开发铺平了道路,用于软微机器人、医疗和空间应用中的微流体。
对最常见的物理刺激的高度敏感和抗湿度的检测对于实时监测中的实际应用至关重要。在这里,据报道,一种简单而有效的策略可以达到高度湿度稳定的杂种复合材料,该复合材料能够同时且准确的压力和温度传感在单个传感器中。改善的电子性能是由于POLE(3,-4-甲基二氧二苯乙烯)(PEDOT)的平面性提高以及Pe-dot之间的电荷转移:聚苯乙烯磺酸盐(PEDOT:PSS)和多壁碳纳米管(CNT)(CNTS)通过强效应强度的相互作用。杂交复合材料中强大的形态引起的首选电子途径是高湿度稳定性的原因。这项研究还表明,该传感器对智能对象识别具有巨大的作用,高度为97.78%。以及摩尔电纳米生成剂(TENG)的位置检测能力,在智能分类方面,在不看到三重传感系统的潜在工业应用方面具有优势。
摘要 — 在本文中,我们介绍了一种基于聚合物的柔性应变传感器,该传感器与 NFC 标签集成,通过可视 LED 指示器检测应变。该传感器采用导电聚合物聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT:PSS) 作为活性材料,位于柔性透明聚合物聚二甲基硅氧烷 (PDMS) 微通道内。应变传感器在不同弯曲条件下会改变其电阻,在弯曲约 100 次时,电阻最多可增加三个数量级。定制开发的无源 NFC 标签带有与应变传感器串联的 LED,由 NFC 读取器供电,以半定量方式检测应变。LED 指示器的光强度根据应变水平进行调制,在松弛或无应变条件下显示最大亮度(~67 勒克斯),在最大应变条件下几乎关闭(~8 勒克斯)。本文还介绍了基于 NFC 的应变传感器系统在食品包装中用于检测腐败的潜在应用。
导电聚合物是储能、柔性电子器件和生物电子器件等众多应用领域中很有前途的候选材料。然而,导电聚合物的制造大多依赖于喷墨打印、丝网打印和电子束光刻等传统方法,这些方法的局限性阻碍了导电聚合物的快速创新和广泛应用。本文,我们介绍了一种基于聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐 (PEDOT:PSS) 的高性能 3D 可打印导电聚合物墨水,用于 3D 打印导电聚合物。由此产生的卓越打印性使得能够将导电聚合物轻松制造成高分辨率和高纵横比的微结构,这些微结构可通过多材料 3D 打印与其他材料(如绝缘弹性体)集成。3D 打印的导电聚合物还可以转化为高导电性和柔软的水凝胶微结构。我们进一步展示了各种导电聚合物装置的快速、简化的制造,例如能够进行体内单元记录的软神经探针。
磺酸盐(SUS)是一类除草剂,可通过抑制乙酰乳酸酶合酶(ALS)抑制植物中分支链氨基酸的生物合成[1,2]。这些除草剂,例如Tribenur-甲基(TBM)和Amidosulfuron,被广泛用于种植谷物,草莓和葡萄[3]。另一方面,2型糖尿病(T2D)是一种复杂而慢性疾病,具有强大的遗传成分,环境因素和生活方式习惯。先前的研究表明,接触除草剂,尤其是SUS和T2D的发展之间可能存在关联。这些研究发现,通过其职业或使用这些除草剂使用的地区暴露于SUS的个人面临T2D的风险更高。但是,需要进一步的研究以充分了解除草剂可能有助于T2D发展并建立确定的因果关系的机制[4-6]。我们报告了三个使用SUS的农艺师案例,这些案例最多三十年并开发了T2D。这些人会定期使用这些除草剂作为工作职责的一部分。