图 1. 完整的风洞组件 ...................................................................................................... 2 图 2. 位于收缩锥前方的蜂窝结构 ...................................................................................... 5 图 3. 拆解的风洞组件:(1)收缩锥,(2)测试/工作部分,和(3)扩散器 ............................................................................................................. 5 图 4. 安装风扇并连接到 12 伏电池的驱动部分 ............................................................................. 6 图 5. 收缩锥示意图 ............................................................................................................. 10 图 6. 测试部分内的安装物体 ............................................................................................. 10 图 7. 扩散器示意图 ............................................................................................................. 11 图 8. 数字风速计 ............................................................................................................. 12 图 9. 双输入数字压力计 ............................................................................................. 12 图 10. 用于收集数据的测试部分内的风速计装置 ............................................................................. 12 图11. 12 伏电池和鳄鱼夹用于为风扇供电 ................................................................ 14 图 12. 收缩锥(SolidWorks) ................................................................
根据参考文献 [01],HOMER 代表电力可再生能源混合优化模型。中西部研究所拥有该软件的版权。它由美国国家可再生能源实验室 (NREL) 开发。它用于帮助设计各种发电厂配置。它具有不同的内置组件,例如光伏板、风力涡轮机、各种公用设施负载、发电机、转换器和电池备份等。它用于模拟发电厂的各种示意图,然后模拟这些示意图以找到最优化的发电厂配置,包括运营成本、净现值 (NPC)、气体排放和经济比较等。全世界对电力的需求都在增加。需要设计一些创新的新型可再生能源系统,以减少对传统能源的依赖。分析不同的案例,根据这些案例,我们可以评估它们的发电量、污染气体排放、净现值成本和平均电力生产成本,这些成本是使用 HOMER Pro 软件估算的。
Shahid Jamil:我曾经擅长于电子产品,现在我对这个程序所获得的知识感到谦卑,认为我不知道多少电子产品!使用了第一个类型的电子设备程序,并具有集成电路设计的专业化,我从理想示意图到包装的第一步学习了电子电路设计。这是学习,努力和团队的旅程。在非常有资格和非常有用的教师的监督下,我们设计了自己的艺术状况。没有他们的指导,这是不可能的。对于每个电子设备有抱负的人来说,这是一个必须具有的学位,因为它使我们拥有知识,直觉,然后使用从示意图模拟到包装到IC测试的各种工具将直觉转化为实用的电子设计的技能。ICD/RFCS2实验室具有最先进的工具和高级CMOS节点用于IC设计。
调控和功能性遗传元件(例如启动子、增强子、限制性酶切位点、转基因和选择标记)的示意图。信息包括但不限于病毒衣壳的组成、包膜结构、分子量、颗粒大小、糖基化位点、基因组的性质(单链、双链、DNA 或 RNA、每个颗粒的基因组拷贝数)、病毒载体的趋向性(例如病毒载体对特定宿主组织的特异性)。• 对于质粒载体,提供调控和功能性遗传元件(例如启动子、增强子、限制性酶切位点、转基因和选择标记)的示意图。信息包括但不限于插入的外来基因的物理特性、生化、生长特性、遗传标记和位置(例如在质粒上、游离型或染色体上)。• 对于基因编辑技术的使用,提供
图 1. 阳极氧化过程示意图和所生产样品的图像。 (a) 两步 (红色) 163 和单步 (绿色) 阳极氧化方法的比较示意图。在单步中,脉冲阳极氧化方案直接应用于短暂恒电位方案之前 164。 (b) 用于制造 3D AAO 165 模板的脉冲电位分布示例。 (c) 由高纯度 Al (99.999%) 制备的 3D AAO。 (d) 由低纯度 Al (99.5%) 制备的 3D AAO。 166 (e) 由 99.5% Al 制备的 3D AAO,呈现氧化物分解 (暗灰色和浅灰色区域)。 (f)经过后处理化学蚀刻后的 3D AAO,由 99.999% 和 99.5% Al 制成,三个不同的 t 周期为:180、240 和 360 秒。还显示了每个样品的样品 168 蚀刻时间。 169
图 1:(a) 不锈钢晶间开裂 (b) Li 对 LLZO 晶间渗透的 SEM 图像。SCC (c) 和 LLZO 中的锂镀层 (d) 引起的开裂扩展示意图。相应的 SCC 机制。
1)神经元搜索启动神经元搜索接口(有关详细信息,请参见部分示意图搜索)。在此页面上,用户可以在单个物种搜索和多人搜索之间进行选择。选择了这些选项之一并选择了物种,则将示意图搜索接口自动加载为默认值。单击Neuropil模型将显示所有神经元的神经元,以动态绘制的示意图。单击神经元将显示该单元格类型的配置文件页面。要返回搜索结果,请单击屏幕右上角的十字架。可选,可以通过在屏幕中心选择“选项卡”来搜索半审理显示选项(仅适用于单个物种模式)。这将加载所选物种3D重建的自动生成的横截面,并允许使用此界面搜索神经元。单击神经膜将突出显示所有连接的神经胶体,并将所有发现的神经元加载到搜索结果的列表视图中。“中央”选项卡中的3D选项允许显示结果,但不能充当搜索接口。存在搜索结果后,用户可以在三个显示选项之间自由切换。另外,在屏幕的底部,可以通过选择“专家搜索”选项卡(请参阅“专家搜索”)来启动专家搜索功能。列表视图结果:在屏幕的左下方,一个选项卡“搜索结果”显示了发现的神经元的数量。单击此选项卡将打开搜索结果的详细列表视图。
图 1:MRAM 示意图。(a) STT-MRAM 单元,(b) 和 (c) 具有电流诱导平面外和平面内自旋极化的 SOT-MRAM 单元。(b) 和 (c) 仅显示了 SOC 层顶面附近的自旋极化。
图 2.7 演示三种液态金属破碎机制的示意图。阳极和阴极上均显示轴对称破碎(a)。阳极上显示非轴对称破碎,阴极上显示膜型破碎机制(b)[17]。......................................................................................................................... 11