针对靶向前列腺特异性膜抗原(PSMA)的宠物示踪剂的需求继续增加。以批准的68个GA-和18个标记的PSMA示踪剂满足这一需求,这在主要城市中心以外挑战。这是因为这些放射性核素的短期半衰期使得有必要在其使用部位附近生产它们。为了克服这一挑战,我们提议产生61 CU的cu来标记PSMA宠物示踪剂。61 Cu可以大规模生产,其3.33小时的半衰期允许在68 GA和18 F的距离上运输。使用61 Cu和B 2-Emitter 67 Cu生产真正的溶液双胞胎。方法:PSMA-I&T(Dotaga-(l-Y)FK(sub-Kue))及其衍生物,其中Dotaga螯合剂被Nodaga(Nodaga-(l-Y)FK(Sub-Kue)取代),在这里报道了Dotaga-psma-i&tasme&taiga and nodaga&tail and nodaga&tasty and nodaga&t and nodaga&t and nodaga&t and nodaga&t。与[68 Ga] Ga-Dotaga-PSMA-I&T,[68 Ga] Ga-Nodaga-PSMA-I&T,[68 GA] GA-PSMA-11和[18 F] PSMA-1007。在LNCAP细胞和异种移植物中进行了体外(亲脂性,亲属性,细胞摄取和分布)和体内(PET/CT,生物分布和稳定性)研究。人类剂量法估计。对[61 Cu] Cu-Nodaga-PSMA-I&T进行了最初的人类成像,在转移性前列腺癌患者中进行。结果:[61 Cu] Cu-Dotaga-PSMA-I-I&T和[61 Cu] Cu-Nodaga-PSMA-I-I&T与射线纯度合成超过97%的射线纯度,明显的摩尔活性在24 MBQ/NMOL的明显摩尔活性后,没有标记后没有纯化。肿瘤吸收也更高在体外,天然Cu(Nat Cu)-Dotaga-dotaga-pSMA-I-I&T和Nat Cu-Nodaga-pSMA-I-I&T显示出高度高的pSMA(抑制浓度分别为50%,11.2 6 2.3和9.3 6 6 6 1 1.8nm),尽管低于Nat Ga-psma-nat ga-psma-n 0.4%(in Anat Ga-psma-n 0.4%)。它们的细胞摄取和分布与[68 Ga] Ga-PSMA-11的分布相当。体内,[61 cu] cu-nodaga-psma-i&t在非目标组织中的摄取量明显低于[61 cu] cu-dotaga-psma-i&t和较高的肿瘤摄取(14.0 6 5.0 6 5.0 6 5.0 6 5.0均比注入的活性(比每千iia/g]) Cu] Cu-Dotaga-PSMA-I-I&T(6.06 6 0.25%IA/G,P 5 0.0059),[68 GA] GA-PSMA-11(10.2 6 1.5%IA/G,P 5 0.0972)和[18 f] PSMA-1007(9.70 6 2.70 6 2.57%IA/G,P 5 0.00.00 HER)。
最近几年,FDA的批准三种治疗剂(Lutetium lu177,Gailium GA 68 PSMA-11,Lutetium Lu188,耐毒性TETRAXTAN都扩大了治疗选择,并增强了核医学在解决复杂疾病中的重要作用。在2024年4月,FDA扩大了Lutathera的指示,包括带有GEP NET的小儿患者12岁及以上的儿科患者,这是该儿科组的放射性药物的首次批准。在核心脏病学中,成像技术的进步进步使我们对心脏病的理解。 在2024年9月,FDA批准了flurpridaz F18进行灌注成像以检测冠状动脉疾病。 新型宠物示踪剂(例如Flurpridaz F18)提高了心肌流动评估的准确性,为临床医生提供了更好的诊断和管理心血管疾病的工具。 这些事态发展不仅增强了患者的预后,而且还表明了核医学对解决医疗保健最紧迫的挑战的基本贡献。 今年,核医学界的合作精神已达到新的高度。在核心脏病学中,成像技术的进步进步使我们对心脏病的理解。在2024年9月,FDA批准了flurpridaz F18进行灌注成像以检测冠状动脉疾病。新型宠物示踪剂(例如Flurpridaz F18)提高了心肌流动评估的准确性,为临床医生提供了更好的诊断和管理心血管疾病的工具。这些事态发展不仅增强了患者的预后,而且还表明了核医学对解决医疗保健最紧迫的挑战的基本贡献。今年,核医学界的合作精神已达到新的高度。
Werner Siemens Imaging Center(临床前成像和放射药物系,主任Bernd Pichler教授)在Eberhard Karls UniversityTübingen的大学医院竞争并与国际研究小组竞争并在抗旋链成像的科学顶级合作。Dominik Sonanini博士研究小组(转化免疫成像和癌症免疫疗法)目前在“肿瘤免疫学中的分子成像”(f/m/m/d)中为下一个时间点提供了博士学位。该职位最初仅限于一年,在成功评估后有可能进一步扩展。对肿瘤细胞的免疫反应涉及各种淋巴样和髓样免疫细胞的复杂相互作用。分子成像可用于非侵入性跟踪整个身体中不同免疫细胞群体的分布,尤其是在肿瘤微环境和淋巴机构中。在该项目中,新开发的免疫细胞示踪剂将被表征和应用在各种肿瘤小鼠模型中,以监测免疫疗法期间不同免疫细胞群体的迁移动力学和激活模式。将开发出高级图像分析技术,以定量评估体内摄取模式的空间和时间摄入模式,这将与离体多重免疫荧光显微镜以及流量和质量细胞仪相关。此外,博士生将为临床研究做出贡献,并对人体组织样本进行相关分析,以支持新开发的新开发的示踪剂候选者的临床翻译。
异常的 tau 内含物是阿尔茨海默病的标志,也是临床衰退的预测指标。有几种 tau PET 示踪剂可用于神经退行性疾病研究,为体内分子诊断开辟了途径。然而,很少有人获准用于临床。了解 PET 信号验证的神经生物学基础仍然存在问题,因为它需要 PET 和(免疫)组织学信号之间大规模的体素到体素相关性。整个人脑的维度很大,组织变形会影响配准,而处理 TB 级信息的计算要求阻碍了正确的验证。我们开发了一个计算管道,用于识别和分割十亿像素数字病理图像中的感兴趣粒子,以生成定量的 3D 密度图。针对免疫组织化学样本的拟议卷积神经网络 IHCNet 是该管道的核心。我们已成功使用三种磷酸化 tau 抗体(AT100、AT8 和 MC1)处理并免疫染色了来自两个完整人脑的 500 多张载玻片,这些载玻片包含数 TB 的图像。我们的人工神经网络从大脑图像中估计了 tau 的包含情况,其对 AT100、AT8 和 MC1 的 ROC AUC 分别为 0.87、0.85 和 0.91。自省研究进一步评估了我们训练的模型学习 tau 相关特征的能力。我们提出了一种端到端流程来创建 TB 级的 3D tau 包含密度图,并将其与 MRI 联合配准,以方便验证 PET 示踪剂。
异常的 tau 内含物是阿尔茨海默病的标志,也是临床衰退的预测指标。有几种 tau PET 示踪剂可用于神经退行性疾病研究,为体内分子诊断开辟了途径。然而,很少有人获准用于临床。了解 PET 信号验证的神经生物学基础仍然存在问题,因为它需要 PET 和(免疫)组织学信号之间大规模的体素到体素相关性。整个人脑的维度很大,组织变形会影响配准,而处理 TB 级信息的计算要求阻碍了正确的验证。我们开发了一个计算管道,用于识别和分割十亿像素数字病理图像中的感兴趣粒子,以生成定量的 3D 密度图。针对免疫组织化学样本的拟议卷积神经网络 IHCNet 是该管道的核心。我们已成功使用三种磷酸化 tau 抗体(AT100、AT8 和 MC1)处理并免疫染色了来自两个完整人脑的 500 多张载玻片,这些载玻片包含数 TB 的图像。我们的人工神经网络从大脑图像中估计了 tau 的包含情况,其对 AT100、AT8 和 MC1 的 ROC AUC 分别为 0.87、0.85 和 0.91。自省研究进一步评估了我们训练的模型学习 tau 相关特征的能力。我们提出了一种端到端流程来创建 TB 级的 3D tau 包含密度图,并将其与 MRI 联合配准,以方便验证 PET 示踪剂。
1日本西塔,大阪大学医学院研究生院核医学和示踪剂动力学系; 2日本苏亚大学大阪大学辐射科学研究所; 3日本Toyonaka的大阪大学理学研究生院化学系; 4日本Toyonaka的大阪大学科学研究生院前沿研究中心; 5日本苏亚大学医院药学系; 6日本亚哈巴伊瓦特医科大学,生物医学科学研究所分子病理生理学; 7 Nishina基于加速器的科学中心,日本西塔玛瑞肯; 8日本苏亚大学医学院医学院医学分子成像系; 9日本苏亚大学大阪大学医学研究生院放射学系;和10分,日本Yahaba的IWATE医科大学内科学系过敏和风湿病学1日本西塔,大阪大学医学院研究生院核医学和示踪剂动力学系; 2日本苏亚大学大阪大学辐射科学研究所; 3日本Toyonaka的大阪大学理学研究生院化学系; 4日本Toyonaka的大阪大学科学研究生院前沿研究中心; 5日本苏亚大学医院药学系; 6日本亚哈巴伊瓦特医科大学,生物医学科学研究所分子病理生理学; 7 Nishina基于加速器的科学中心,日本西塔玛瑞肯; 8日本苏亚大学医学院医学院医学分子成像系; 9日本苏亚大学大阪大学医学研究生院放射学系;和10分,日本Yahaba的IWATE医科大学内科学系过敏和风湿病学
项目描述。土壤中的铁矿物相在全球元素周期中起关键作用。然而,我们对土壤氧化还原条件如何影响矿物稳定性和转化以及影响相关有机碳的隔离和/或动员的理解尚不清楚。作为一个较大团队的一部分,您将为研究铁矿矿物转化的新方法和矿物相关的有机碳的耦合命运做出贡献。,您将使用最新的实验和分析技术(包括稳定的同位素示踪剂,同步器技术和XRD),对选定的铁矿物转化过程及其对碳动态的影响进行实验室和现场研究。
项目描述。土壤中的铁矿物相在全球元素周期中起关键作用。然而,我们对土壤氧化还原条件如何影响矿物稳定性和转化以及影响相关有机碳的隔离和/或动员的理解尚不清楚。作为一个较大团队的一部分,您将为研究铁矿矿物转化的新方法和矿物相关的有机碳的耦合命运做出贡献。,您将使用最新的实验和分析技术(包括稳定的同位素示踪剂,同步器技术和XRD),对选定的铁矿物转化过程及其对碳动态的影响进行实验室和现场研究。
确定疾病存在 [1] 的洞察力。生物医学数据正在以前所未有的速度生成。生物医学科学家和临床医生都需要使用高性能计算、生物信息学和云存储,以有意义的方式高效、准确地分析这些数据。处理大型数据集的现代问题需要人工智能的现代解决方案,特别是利用人工智能的深度学习子学科。围绕人工智能(包括机器学习和深度学习)的普遍兴趣在近代历史上经历了急剧上升,因为它有望彻底改变医疗保健 [2] 。然而,已经澄清的是,“人工智能不会取代放射科医生,但使用人工智能的放射科医生将取代不使用人工智能的放射科医生” [3] 。迫切需要对患有神经退行性疾病的人进行早期诊断。到做出诊断时,中枢神经系统的损伤程度已无法修复。事实反复证明,预防神经退行性疾病的最佳方法是及早采取行动,而这只有通过早期诊断才能实现 [4] 。由于 AD 在人群中发病率高、社会负担重、无症状的临床前期长,早期诊断对于扭转疾病的趋势至关重要 [5] 。目前,AD 的诊断依据是临床表现为认知和记忆缺陷,以及组织病理学上存在混合蛋白病。AD 诊断所需的生物标志物包括 β-淀粉样斑块和由过度磷酸化的 tau 组成的神经原纤维缠结 [6] [7] 。通过影像、血液或脑脊液 (CSF) 分析结合组织学标志物,有助于明确区分轻度认知障碍 (MCI)、AD 的各个阶段或其他形式的痴呆症,例如路易体痴呆或额颞痴呆 [8] [9] [10] 。非侵入性或微创成像已成为 AD 诊断发展中的宝贵资产。例如,β-淀粉样斑块的 PET 扫描需要注射专门的放射性标记示踪剂,例如 florbetapir [11] 。PET 扫描用于 AD 诊断已被证明具有至少 96% 的敏感性和 100% 的特异性,即使对于较轻微的疾病形式也是如此 [7] 。然而,MRI 扫描仅使用磁场和无线电波进行成像。此外,脑成像提供了一种侵入性较小的方法尽管 PET 成像已获得 FDA 批准多年,并且具有很高的诊断准确性,但由于成本高昂以及患者对使用放射性标记示踪剂的担忧,它尚未成为标准的临床实践。因此,MRI 不使用计算机断层扫描 (CT) 所用的 X 射线,也不使用 PET 扫描所用的放射性标记示踪剂。但是,对于某些不能暴露于强磁波的患者(例如装有心脏起搏器或动脉瘤夹的患者),MRI 是不切实际的。MRI 可以准确检测 AD 患者的皮质萎缩模式、心室扩大、β-淀粉样斑块和神经原纤维缠结的存在和密度 [12] [13] 。