众所周知,农业和森林生态系统充当陆地生态系统中的重要碳。了解面对气候变化时生态系统碳周期的基本过程和机制对于量化陆地生态系统的碳汇至关重要。生态系统碳循环不能与水和氮循环分开,因此不能在农业和森林生态系统中对气候变化的碳水氮过程的反应和适应性进行进一步研究。该研究主题发表了10篇论文,以获得对农业和森林生态系统中碳 - 水氮相互作用的基本机制和过程的新见解,以响应气候变化。垃圾分解是一个关键的生物地球化学过程,它对森林和草原生态系统中的碳和氮循环深刻影响。气候因素可以显着影响垃圾分解速率,碳固换以及CO 2和N 2 O.CO 2和N 2 O.的温室气体的排放。对37个发表研究的351个样本进行了全面的元分析,以探讨太阳辐射和降水对垃圾分解和CO 2发射的互动效应。他们发现太阳辐射显着增加了垃圾分解,这取决于降水状态。同时,Li等人。通过对青海藏高原上的长期操纵变暖实验,研究了变暖和开垦对N 2 O发射的影响。他们的结果表明,通过增强土壤硝化和相关的
SARS-CoV-2 和 COVID-19 就像一场现代瘟疫一样影响着世界,在全球蔓延。当人类发现这种新瘟疫带有变种时,人类更加恐惧,而且即使感染了一种病毒,也并不意味着对所有变种都具有免疫力。但是,正如以前的流行病一样,由于医学科学的进步和病毒自身进化为危害较小的形式,COVID-19 的致命性和传播范围已经减弱到令人稍感担忧的现状。SARS-CoV-2 和 COVID-19 在对世界造成致命袭击的高峰期受到了密切关注,这揭示了一些现在用于抗击这种流行病的方法。我们现在知道,与我们不同,我们的免疫系统对 SARS-CoV-2 并不感到意外,因为在 COVID-19 流行病爆发之前,我们就存在对 SARS-CoV-2 的交叉反应免疫。交叉反应性免疫是由特定病原体或抗原引起的抗体和记忆B细胞和T细胞介导的,这些病原体或抗原也能对其他病原体或抗原作出反应 (1)。交叉反应性是适应性免疫的主要特征,蛋白质抗原(表位)内小部分识别 (2) 和同源 B 细胞和 T 细胞受体的多特异性 (3,4) 高度支持这种免疫反应。人类普通感冒冠状病毒 (hCoV) 作为对 SARS-CoV-2 产生交叉反应性免疫的潜在来源而受到广泛关注 (5)。然而,也有报道称 SARS-CoV-2 与无关病毒 (6)、细菌 (7)、疫苗 (8,9) 甚至食物抗原 (9) 之间存在免疫交叉反应。激活交叉反应性免疫并非总是具有保护作用,也可能产生免疫病理学 (10)。此外,免疫交叉反应是双向的,SARS-CoV-2感染以及COVID-19疫苗也可诱导交叉反应性免疫。事实上,SARS-CoV-2和COVID-19疫苗与人体组织之间存在免疫交叉反应,这提出了SARS-CoV-2感染和COVID-19疫苗可能导致自身免疫反应的可能性(见图1)(11)。显然,预先存在的交叉反应性免疫必定对形成对病毒和COVID-19疫苗的免疫反应产生重大影响,但其影响程度和对保护的贡献仍未确定。同样,SARS-CoV-2和COVID-19疫苗也可能产生重大的交叉反应性免疫学后果,需要进行研究。在这篇关于“交叉反应性免疫学”的前沿研究课题中,
硅(Si)越来越被公认为是一种有益的因素,可显着提高作物的生长和生产力,尤其是面对各种非生物和生物胁迫。其在应激条件下保护植物方面的作用以及改善植物的整体适应性,引起了研究人员和农艺学家的极大关注。值得注意的是,最近的研究表明,即使没有压力,SI也可以提供好处,这表明其以可持续的方式增强植物营养和生产力的潜力(Prado,2023; Verma等,2023)。通过缓解压力的不利影响和促进增长,SI有助于可持续的农业实践,与对环保农业解决方案的需求保持一致(Prado等,2024)。农作物中各个地区的营养疾病在全球各个地区都普遍存在,并且SI已被证明可以增强对降低的耐受性(Alves等,2024; Teixeira等人。; Silva等,2021; Teixeira等人,2021)以及毒性(Alves等,2023; SousaJúnior等,2022; Barreto等,2022)。这种双重能力使SI成为改善植物健康和农业弹性的关键组成部分。随着气候变化的影响加剧,干旱,盐度和冷应激等因素构成了对植物活力的显着威胁。这些压力源是由于农业实践不足和肥料成本上升而加剧了迫切需要采用提高作物生产力的策略,同时又将这种挑战降至最低,尤其是在农作物中(Verma等,2024年)。在过去的二十年中,科学界关于SI在土壤和植物系统中的作用的兴趣显着提高。迄今为止的研究发现很有希望,表明SI可以在不断变化的气候下有效缓解各种压力,并增强农业弹性,在我们对土壤植物相互作用所涉及的机制的理解方面取得了显着的进步。在这个专门的研究主题中,我们策划了一系列研究,这些研究深入研究了SI在增强土壤植物动力学中的多方面作用。一个重要的贡献是Teixeira等人的作品。,重点是SI在能量甘蔗中的作用。鉴于其可再生能源生产的潜力,能量甘蔗对于可持续农业实践至关重要。然而,该研究强调了碱性土壤中的铁缺乏症所带来的挑战。作者证明了SI增强了铁的吸收,从而提高了营养效率和光合作用,最终导致增加
糖尿病(DM)仍然是全球死亡的重要原因,对全球公共卫生造成了重大负担。根据国际糖尿病联合会的数据,与2011年报告的3.66亿例病例相比,到2030年,DM患者的数量预计将增加50%。dm引起了各种并发症,导致器官损害,例如心脏和肾脏,最终导致生活质量降低,并增加了早死亡的速度。例如,患有糖尿病的人患心血管死亡率的风险更高。DM的发展涉及多种因素,并提出了几种临床风险因素,包括超重或肥胖。然而,其他几个潜在因素对DM发病机理的影响仍然尚无定论。在遗传水平上,具有DM家族史可以提高发展病情的风险,并且已确定有500多个遗传基因座与DM相关。早期努力发现与糖尿病并发症相关的基因依赖于家庭连锁分析,候选基因研究易受假阳性的敏感性以及全基因组关联研究(GWAS)受样本量约束的范围。检测非常容易受到疾病的人可能有助于预防疾病。然而,DM并发症的遗传决定因素尚未得到充分理解。该研究主题涵盖了30项研究的集合,这些研究探讨了糖尿病的各个方面及其并发症。特别是,它包括15项研究,研究了与糖尿病及其并发症相关的流行病学特征和危险因素。此外,五项研究分析了与糖尿病和糖尿病并发症发病机理有关的潜在生化标志物,七项研究评估了预测糖尿病及其并发症的遗传信息,以及评估治疗方案的三项研究。
生殖衰老始于女性的30多岁,更年期通常发生在48至50岁之间,而卵母细胞库存(卵巢衰老)的耗尽是女性一生中不可避免的过程,最终会影响预期和健康的影响。卵巢老化是一个多维过程,其特征是卵泡数量和卵母细胞质量的逐渐下降,大约37岁左右,导致后代的不育和先天性残疾增加(1)。尽管重要性很重要,但对人类卵巢衰老的基本生物学机制知之甚少,尤其是在延长女性生育能力和改善人口质量方面。尽管预期人类的预期寿命在过去一个世纪中显着延长,但绝经年龄在很大程度上保持不变,这暗示了遗传和表观遗传因素的潜在作用,但典范标志着启动的启动偏离衰老的启动,而在47%的案例中,遗传的年龄是遗传的,而不是遗传的年龄。口服避孕药,饮酒,吸烟和体育锻炼水平(3,4)调节这种内分泌老化过渡。最近,下丘脑 - 垂体轴的衰老以及端粒酶活性降低已成为生殖衰老的关键催化剂(5)。卵泡闭锁是由于颗粒和卵母细胞的细胞凋亡引起的,这是由活性氧(ROS)产生过多引起的,也会导致卵巢衰老。Wang L.等。 inWang L.等。in最近的研究使遗传多态性确定为自然更年期年龄异质性的主要贡献者,尤其是对于参与DNA修复途径的基因。病理卵巢衰老,例如早产卵巢不足和早期,也表现出相似的遗传敏感性(6)。这一现象的核心是卵巢功能的卵泡发育和维持,尤其是DNA甲基化的表观遗传修饰,在卵巢发育的关键阶段对基因表达产生了显着影响。这些研究提供了阐明遗传学与环境对卵巢衰老的相互作用的影响。该研究主题重点介绍了描述生理和病理卵巢衰老的遗传和表观遗传机制方面所取得的一些进步,从而提供了对延长女性生殖寿命的潜在机制的见解。研究表明DNA甲基化(DNAM)衰老与生殖衰老之间的联系。但是,DNAM与更年期年龄之间的因果关系仍然不确定。技术进步使使用各种分子或表型生物标志物测量生物年龄成为可能。
微纳器件与技术研究是信息科学与生命科学交叉领域的重要前沿,在神经科学和医学应用领域具有重要的战略意义和良好的应用前景(Liu et al.,2020)。随着微纳加工技术的快速进步,创新的智能化、微型化、集成化器件不断涌现,在检测和调控方面具有独特的优势。值得注意的是,将微纳器件与神经科学和临床医学相结合,可以解决科学前沿问题并培育新的研究热点。癫痫是一种主要的神经系统疾病,影响着全球超过六千万人,严重影响他们的健康和生活质量(Bernhardt et al.,2019)。研究相关神经回路内神经活动的变化对阐明癫痫的发病机制和治疗方法至关重要。可植入微电极阵列能够高质量地记录信号和解码神经信息,在脑机接口方面具有巨大的应用潜力(Wang 等人,2024 年)。Han 等人设计并制造了一种可植入微电极阵列,专门用于癫痫大鼠基底神经节纹状体区域的电生理信号检测和分析。对癫痫发作期间纹状体的电生理数据的分析为了解颞叶癫痫发作初期和潜伏期期间纹状体神经活动的动态过程提供了宝贵的见解。这一理解有助于揭示癫痫的神经机制,同时促进相关治疗方法的进步。疼痛是一种情绪和不愉快的感官体验,会对生活和工作的各个方面产生重大的生理和心理影响。纳米技术的最新进展为利用各种纳米材料和靶向表面的创新止痛策略铺平了道路
当前的生物医学知识使您可以确定思想代表的大脑功能如何在病理意义上受到一系列变化,因为大脑中解剖学微结构的状况和对环境刺激的反应中的神经生理学变化(1)。越来越多的证据表明,精神分裂症中炎症的含义,并且诊断为频谱的诊断患者可能会增加促炎性标志物(2)和炎症性疾病的较高患病率。此外,遗传和表观遗传学研究强调了免疫和内分泌系统在精神分裂症中的作用(3),一些临床试验检测到了抗炎药对抗炎药的抗精神病药作用(4)。鉴于这些考虑因素,该研究主题旨在评估各种分子,生物学,遗传和神经成像方面,因为炎症的后果是识别危险因素,预测因素以及可能的保护因素或可能的治疗方法。关于常规免疫实验室参数,Skalniak等。强调他们在入院时测量的值如何可以改善治疗后精神分裂症的阳性症状。从数据分析中,作者反复强调了精神分裂症患者的C-反应性蛋白质(CRP)水平改变,与健康对照组相比。根据使用PANSS量表的进一步的心理测量学评估,与炎症参数的相关性存在于入院时的正panss量表中。这些参数在药物治疗后也显着下降。作者发现,对于代表思想过程唤醒和混乱的PANSS分量表,免疫学参数C4和CRP分别对参数进行了参数修改药物治疗的结果。进一步评估负面症状,FT3,葡萄糖和肌酐水平似乎是实质性的,而肌酐会影响唤醒子量表和HDL影响描述负面情绪的子量表。在他们关于精神分裂症和细胞衰老候选基因筛查,机器学习,诊断模型和药物预测的研究中,Feng等。通过kegg分析证明了爱泼斯坦 - 巴尔病毒(EBV)感染与精神分裂症相关
2型糖尿病(T2DM)在21世纪(国际糖尿病联合会(IDF),2022年)以惊人的速度增长。T2DM及其并发症在所有地区都带来了沉重的疾病负担(Ali等,2022)。确定与T2DM发展有因果关系的因素可以为预防疾病提供重要的证据基础,并促进新治疗策略的发展。肠道菌群(GM)是一个复杂的生态系统,由大约4×10 13种共生细菌,原生动物,真菌,古细菌和病毒组成(Chen等,2021; Martino等,2022)。gm参与了人体的各种生理活性,例如代谢,炎症过程和免疫反应(Fan and Pedersen,2021; Gill等,2022)。越来越多的证据表明,转基因在T2DM等代谢疾病中起重要作用(Gurung等,2020)。T2DM患者患有代谢疾病和慢性炎症状态,并伴有GM障碍(Yang等,2021)。还发现了GM组成的变化与T2DM的发展以及相关并发症的显着关联(Iatcu等,2021),例如,门类细菌群/企业的不平衡与近距离渗透性相关联,与近距离渗透性相关联,并渗透性渗透性,伴有细胞质,伴有细胞质,并渗透性,并伴有细胞处理效果。随后的DM的炎症反应特征(Iatcu等,2021)。也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。 尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。 孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。 由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险
人类免疫系统与细胞内细菌之间的战斗是一种复杂而有趣的生存和破坏舞蹈。先天免疫力,是人体针对入侵微生物的第一条防御线,在这种冲突中起着关键作用。本社论探讨了对抗细胞内细菌的先天免疫的机制和策略,强调了免疫系统在维持人类健康中的关键作用。先天免疫是对传染剂的非特定,快速和有效的反应。它依赖于对微生物(称为病原体相关的分子模式(PAMP)的保守分子模式的识别(1)。这种认可触发了一系列旨在消除威胁的免疫反应。先天性免疫对细胞内细菌的关键策略之一是检测和消除感染细胞的能力。此过程涉及通过模式识别受体(PRR)在吞噬细胞(例如巨噬细胞和树突状细胞(Sankar和Mishra))表面检测PAMP。PRR识别细菌成分并启动信号级联,从而导致细胞因子和其他免疫介质产生。这些细胞因子然后募集并激活其他免疫细胞以消除受感染的细胞。另一个重要的策略是抗菌肽(Duarte-Mata和Salinas-Carmona)靶向和破坏细胞内细菌。这些由各种免疫细胞产生的肽具有破坏细胞膜或干扰必需细胞过程的能力。一些抗菌肽甚至充当信号分子以协调免疫反应(Duarte-Mata和Salinas-Carmona)。凋亡是一种最近发现的机制,其先天免疫与细胞内细菌作斗争。此过程的特征是感染宿主细胞的裂解和细胞内含量的释放,这使免疫系统警告感染的存在(2)。凋亡是通过caspase-1激活引发的,响应于PAMP或与损伤相关的分子模式(DAMP)。caspase-1激活导致加油蛋白D的寡聚化,该dasdermin d在细胞膜中形成毛孔,从而导致细胞裂解。细胞内细菌或其成分通过这些毛孔触发
青春期的特征是童年的终点和青春期的开始。所有生理和神经系统变化代表了人类发展的关键阶段,从童年到成年。在此阶段,随着它们成熟的各种人类系统,它们之间存在着重要而重要的生物学相互作用。通过激素,物理和神经过程对不同生物系统的和谐功能对于人类发展的这一阶段至关重要。这些生物系统的功能取决于个人的遗传遗产和他们作为青少年的社会生活(例如,家庭支持,社会经济地位和健康的行为)(1-4)。在女孩中,青春期的发作开始于11岁左右,而在男孩中,它发生在12岁左右。在这段时间里,发生了第一次解剖转化,例如女孩的乳腺发育和男孩的睾丸体积增加(4)。下丘脑 - 垂体 - 基达轴在青春期期间经历了显着的激活和成熟,导致性激素分泌,包括睾丸激素和雌激素。这些激素变化影响了继发性特征,生殖器官以及整体身体生长和成熟的发展(5)。在青春期,下丘脑是大脑的一个区域,开始释放促性腺激素释放激素(GNRH),该激素(GNRH)刺激了垂体以释放两种重要的激素:叶酸激素(LH)和刺激性激素(fsh)(fsh)(6)。早期的青春期这些激素作用于雌性或雄性睾丸的卵巢作用,从而触发性激素的产生 - 雌性的雌激素和男性的睾丸激素(6)。青春期时期取决于遗传学和社会因素,例如营养,社会经济地位和心理特征(4,5)。这一时期是由激素浮动和遗传因素驱动的,有助于在青春期观察到的认知和行为转化,通常发生在性腺后2 - 4年后(4,7)。大脑中的结构和功能重组会影响负责情绪调节,社会认知和决策的领域。