识别在发育、再生和疾病状态下产生分化细胞类型的祖细胞对于理解控制此类转变的机制至关重要。一个多世纪以来,人们开发了不同的谱系追踪策略,这有助于解开祖细胞与其后代之间的复杂关系。在这篇综述中,我们讨论了谱系追踪分析如何随着技术进步而发展,以及这种方法如何有助于在不同细胞分化背景下识别祖细胞。我们还重点介绍了几个例子,其中谱系追踪实验有助于解决长期存在的争论和识别意想不到的细胞起源。本讨论强调了这一百年来描绘细胞谱系关系的探索如何仍然活跃,并且随着新方法的发展,人们正在取得新的发现。
摘要:少突胶质细胞祖细胞(OPC)代表神经胶质的亚型,引起中枢神经系统(CNS)中的髓磷脂形成细胞(CNS)。虽然OPC在开发过程中具有很高的增殖,但在成年期,它们的命运受到细胞外环境的严格影响,它们变得相对静止。在创伤性损伤和慢性神经退行性疾病中,包括自身免疫原状,少突胶质细胞发生细胞凋亡和脱髓鞘开始。成人OPC立即被激活;它们在病变部位迁移并扩散以补充受损区域,但它们的效率受到神经胶质疤痕的障碍,这主要是由反应性星形胶质细胞,小胶质细胞和抑制性细胞外基质成分的沉积所形成的屏障。一方面,神经胶质疤痕限制了病变的扩散,它也会阻止组织再生。旨在减少星形胶质细胞或小胶质细胞激活并将其转移到神经保护表型的治疗策略已被提出,而OPC的作用在很大程度上被忽略了。在这篇综述中,我们从OPC的角度考虑了神经胶质疤痕,分析其行为时,当病变起源并探索旨在维持OPC的潜在疗法时,以有效地区分和促进remer髓。
接受白细胞手术。收集后,这些单元将立即或冷冻存储后注入受体。•造血祖细胞(HPC)(也称为干细胞)从原始的造血干细胞移植(HCST)供体提升旨在恢复造血干细胞移植后的造血或增强移植功能(HSCT)。曾对接受供体淋巴细胞输注(DLI)的同种异体造血细胞移植(HCT)的个体的证据摘要,证据包括荟萃分析,系统评价,非随机研究,非驱动研究,观察性研究和病例系列研究。相关结果是总体生存和疾病状况的变化。在各种血液系统恶性肿瘤中以及针对诸如计划或先发制人的DLI,复发的治疗或混合到充分供体嵌合体的转化率的各种适应症中,患者显示出对DLI做出反应的证据。同种异体HCT后,对DLI的反应率在慢性骨髓性白血病(CML)中最好,随后是淋巴瘤,多发性骨髓瘤和急性白血病。CML以外,当使用化学疗法诱导来减轻DLI之前的肿瘤负担时,临床反应最有效。证据足以确定该技术对具有造血干细胞移植(HSCT)的个体的净健康结果的影响,这些人接受造血祖细胞(HPC)(也称为干细胞)的增强,该证据包括系统的综述 - 荟萃分析和观察研究。相关结果是总体生存和疾病状况的变化。较差的移植功能是HSCT的严重并发症,并且已经在多种血液系统恶性肿瘤中研究了HPC促进功能,以恢复造血或增加的移植功能(促进HSCT)。尽管证据不健壮,因为HSCT后HPC提升没有高质量的RCT,但可用的证据证明了对HSCT后非移植或延迟植入的个体的有益效果。此外,大多数机构和共识指南建议在第一次HSCT时,应收集足够的造血干细胞(HSC)以进行两种干细胞移植。在非植物或延迟植入的情况下,可以将增强干细胞(BSC)用于第二次移植,也可以用于干细胞的促进。证据足以确定技术对净健康结果的影响。对于具有同种异体HCT的个体,他们接受了经过修改的(遗传或其他体内修饰)DLI,证据包括病例系列。相关结果是总体生存和疾病状况的变化。案例系列已经证明了该技术的可行性,没有严重的不利影响。没有与标准治疗进行比较的,施用改良的供体淋巴细胞的功效尚不清楚。证据不足以确定技术对健康结果的影响。
HSC = 造血干细胞 MPP = 多能祖细胞 MLP = 多淋巴祖细胞 ETP = 早期 T 细胞祖细胞 BNK = PreB/NK 祖细胞 MEP = 巨核细胞-红细胞祖细胞 CMP = 普通髓系祖细胞 GMP = 粒细胞/巨噬细胞祖细胞
f i g u r e 1 p53失活挽救NBS1 NES-CRE有害脑表型。(a)通过p53失活在p21处拯救NBS1 NES-CRE脑缺陷。(b)与NBS1 NES-CRE EGL和大脑皮层相比,NBS1 NES-CRE,P53 / EGL和大脑皮层缺乏凋亡。比例尺=20μM。(c)与NBS1 NES-CRE的大脑相比,NBS1 NES-CRE EGL中的Tunel阳性细胞数量显着减少。nbs1 nes-cre(n = 3),nbs1 nes-cre,p53 /(n = 2),nbs1 ctrl(n = 4)。nbs1 nes-cre vs nbs1 ctrl(脑皮质**:p = 0.0018,egl ****:p <0.0001),nbs1 nes-cre,p53 / vs nbs1 nbs1 nbs1 nes-cre(大脑皮层NBS1 CTRL(脑皮质 *:P = 0,0181,EGL *:P = 0.0360)。(d)NBS1 NES-CRE和NBS1 NES-CRE,P53 / EGL表现出γ-H2AX灶。比例尺=20μM。(E)NBS1 NES-CRE和NBS1 NES-CRE,p53 / eGL和脑皮质中γ-H2AX +细胞的定量。n.s:没有显着差异。nbs1 nes-cre
哺乳动物新皮层是最近的进化结构,与人类的认知能力较高有关。新皮层的大小和形状在妈妈的种类中也有所不同,甚至在灵长类动物中(Herculano-Houzel 2019; Rakic 2009; Zilles等,2013年)。与其他灵长类动物相比,人类在对现代人类的发展过程中获得了最扩展,最复杂的新皮层(Rakic 2009)。新皮质扩张取决于神经茎和祖细胞(NPC)的增殖能力以及随后的神经元产生(Cárdenasand Borrell 2020; Lamonica等,2012; Namba and Huttner 2017; Namba and Huttner 2017; Rash efters 2017; Rash及其他2019; Sun and Hevner 2014; sun and Hevner 2014;图》;1)。npc可以分为两个主要类别:顶端祖细胞(AP),主要由顶端radial胶质神经胶质(ARG,也称为心室径向胶质胶质,VRG)和基础祖细胞(BPS)组成,这些祖细胞(BPS)包括基础中间的祖先(BIPS)和基底radial Glia(也称为BRG)(BRG)(BR GLIA)(BR GLIA)(BR GLIA)(BR GLIA)(BR GLIA,ORADIAL,ORADIAL as COL)。AP和BP分别位于发育中的新皮层的心室(VZ)和室室(SVZ)中。arg主要在新皮层的早期发展期间扩大了数量,然后在中期到后期开始生产BP(Cárdenasand Borrell 2020; Namba and Huttner 2017; Sun and Hevner 2014)。自
抑制负调节剂在免疫细胞中的功能作用是开发免疫疗法的有效方法。 丝氨酸/苏氨酸激酶造血祖细胞激酶1(HPK1)参与T细胞受体信号传导途径,通过在Ser-376时通过其磷酸化诱导SLP-76的降解,从而减少了免疫反应,从而减轻了T细胞的活化。 有趣的是,一些研究表明,HPK1激酶活性的遗传消融或药理抑制通过增强T细胞激活和细胞因子产生来改善对CANS的免疫反应。因此,HPK1可能是基于T细胞的癌症免疫疗法的有前途的可药物目标。 为了增加针对癌细胞的免疫反应,我们设计和合成了KHK-6,并评估了其细胞活性以抑制HPK1并增强T细胞活化。 KHK-6抑制了HPK1激酶活性,IC 50值为20 nm,CD3/CD28诱导的SLP-76磷酸化在Ser-376上,KHK-6显着增强了CD3/CD228诱导的细胞因子的产生;表达CD69,CD25和HLA-DR标记的CD4 +和CD8 + T细胞的比例; SKOV3和A549细胞的T细胞介导的杀伤活性。 总而言之,KHK-6是一种新型的ATP竞争性HPK1抑制剂,可阻断SLP-76的HPK1下流流的磷酸化,从而增强了T细胞的功能激活。 总而言之,我们的研究表明KHK-6在抑制HPK1抑制免疫疗法的药物发现中的有用性。抑制负调节剂在免疫细胞中的功能作用是开发免疫疗法的有效方法。丝氨酸/苏氨酸激酶造血祖细胞激酶1(HPK1)参与T细胞受体信号传导途径,通过在Ser-376时通过其磷酸化诱导SLP-76的降解,从而减少了免疫反应,从而减轻了T细胞的活化。有趣的是,一些研究表明,HPK1激酶活性的遗传消融或药理抑制通过增强T细胞激活和细胞因子产生来改善对CANS的免疫反应。因此,HPK1可能是基于T细胞的癌症免疫疗法的有前途的可药物目标。为了增加针对癌细胞的免疫反应,我们设计和合成了KHK-6,并评估了其细胞活性以抑制HPK1并增强T细胞活化。KHK-6抑制了HPK1激酶活性,IC 50值为20 nm,CD3/CD28诱导的SLP-76磷酸化在Ser-376上,KHK-6显着增强了CD3/CD228诱导的细胞因子的产生;表达CD69,CD25和HLA-DR标记的CD4 +和CD8 + T细胞的比例; SKOV3和A549细胞的T细胞介导的杀伤活性。总而言之,KHK-6是一种新型的ATP竞争性HPK1抑制剂,可阻断SLP-76的HPK1下流流的磷酸化,从而增强了T细胞的功能激活。总而言之,我们的研究表明KHK-6在抑制HPK1抑制免疫疗法的药物发现中的有用性。
虽然存在多种研究 CRISPR 脱靶 (OT) 编辑的方法,但在临床相关编辑过程后,很少有方法在原代细胞中进行过头对头比较。因此,我们在体外造血干细胞和祖细胞 (HSPC) 编辑后比较了计算机模拟工具 (COSMID、CCTop 和 Cas-OFFinder) 和经验方法 (CHANGE-Seq、CIRCLE-Seq、DISCOVER-Seq、GUIDE-Seq 和 SITE-Seq)。我们使用 11 种与 Cas9 蛋白复合的不同 gRNA(高保真 [HiFi] 或野生型版本)进行编辑,然后对通过计算机模拟和经验方法确定的指定 OT 位点进行靶向下一代测序。我们平均每个向导 RNA (gRNA) 识别出少于一个 OT 位点,使用 HiFi Cas9 和 20-nt gRNA 生成的所有 OT 位点都可通过除 SITE-seq 之外的所有 OT 检测方法识别。这导致大多数 OT 提名工具具有高灵敏度,并且 COSMID、DISCOVER-Seq 和 GUIDE-Seq 获得了最高的阳性预测值 (PPV)。我们发现经验方法无法识别生物信息学方法未识别的 OT 位点。这项研究支持可以开发出既能保持高灵敏度又能保持 PPV 的精细生物信息学算法,从而能够更有效地识别潜在的 OT 位点,而不会影响对任何给定 gRNA 的彻底检查。
反对者:Lorenz Studer 教授 斯隆凯特琳研究所 发育生物学系 考试委员会:Anna Falk 教授 隆德大学 干细胞治疗系 András Simon 教授 卡罗琳斯卡医学院 细胞与分子生物学系 Åsa Mackenzie 教授 隆德大学 生物体生物学、生理学与环境毒理学系
人类CD34 +造血干细胞和祖细胞(HSPC)是临床HSC移植的标准细胞来源,以及实验性异种移植,以产生“人性化小鼠”。为了进一步扩展这些人源性小鼠的应用范围,我们开发了一种方案,以在移植前有效地编辑人CD34 + HSPC的基因组。过去,操纵HSPC在体外培养过程中本质上难以转导,并且在体外培养过程中迅速失去其干性和植入潜力,这使操纵HSPC变得复杂。然而,使用SGRNA的优化核反射:CAS9核糖核蛋白复合物,我们现在能够在具有几乎100%效率的CD34 + HSPC中编辑候选基因,并在具有高I IntrineAge srimineage syprineage hampopooietic smatopoietic的较高的小鼠中将这些修饰的细胞移植在免疫缺陷的小鼠中。结果是一种人源化的小鼠,我们从中从其人类免疫系统中删除了感兴趣的基因。