血管免疫细胞T细胞淋巴瘤(AITL)是一种独特的外周T细胞淋巴瘤(PTCL),预后较差(Swerdlow等,2016)。对于AITL患者,5年的总生存率(OS)率为44%,无进展生存率(PFS)率为32%(Advani等,2021)。基于蒽环类药物的化学疗法方案经常使用,但其有效性受到限制。基于传统治疗的不令人满意的结果,NCCN肿瘤学的临床实践指南建议参与临床试验作为首选管理策略(Horwitz等,2022)。值得注意的是,尽管某些患者的分期分期或预后评分通常用于评估T细胞淋巴瘤,但其临床结局差异很大。预后的差异可能是由于AITL的异质性引起的(Zhang等,2023)。因此,需要更好地分层患者的新型模型。Chidamide是一种亚型选择性组蛋白脱乙酰基酶(HDAC)抑制剂的苯甲酰胺类型(Gong等,2012)。近年来,奇达胺在PTCL中似乎是一种有前途的治疗方法,尤其是在AITL中。在复发或难治性(R/R)AITL中的Chidamide II期研究中,总反应率(ORR)为50%(Shi等,2015)。在一项多中心II期临床试验中,将奇达胺与未经处理的AITL中的泼尼松,依托泊苷和沙利度胺相结合,ORR为90.2%。2年无进展生存率(PFS)和总生存率(OS)率分别为66.5%和82.2%(Wang等,2022b)。然而,在现实世界分析中,与单独的化学疗法相比,将奇达酰胺与化学疗法相比是否可以改善OS的矛盾结果(Shi等,2017; Liu等,2021; Wang等,2022a)。需要进一步的证据来阐明在现实世界中奇达胺的效率。机器学习(ML)算法是人工智能的关键领域,可以通过利用计算方法来从复杂的数据中学习,以识别预测的可能功能(Haug and Drazen,2023)。与传统的广义线性模型相比,基于高级算法的机器学习在数据分布和完整性方面更容易接受,并且在挖掘数据值方面具有更大的功能(Elemento等,2021)。因此,近年来,机器学习已被广泛用于医疗领域,并已发展成为一种有效的工具,可以在做出临床决策时使用(Radakovich等,2020; Haug and Drazen,2023; Swanson等,2023)。因此,本研究的目的是建立ML模型来预测AITL的预后,并在现实世界中评估Chidamide的好处。
简介血管壁是一种复杂的多层组织,其中包含许多细胞群,可协调维持血管稳态并调节疾病状态下的血管重塑。主要动脉的最外层,Tunica Adventitia,由周细胞,成纤维细胞,脂肪细胞,WBC和常驻祖细胞/干细胞组成,均由细胞外基质,血管周围脂肪和Vasa vasorum(1-5)组成。外在重塑发生在慢性血管疾病或急性血管损伤之后,随着外在细胞的增殖,分泌促炎性细胞因子募集循环循环的白细胞,并增加细胞外基质沉积,从而导致慢性血管炎症和慢性血管炎症和僵硬(6,7)。在膜中发现的细胞群体,干细胞抗原-1 +祖细胞(ADVSCA1细胞)已成为兴趣增加的群体,因为这些多能细胞表现出具有特定分化能力的显着异源性基因性,因此对于病理脉管脉冲重塑和血管造成的维修可能很重要(3)。使用平滑肌细胞 - 特异性谱系跟踪和RNA-Seq,我们的组表征了通过原位重编程过程(称为ADVSCA1-SM细胞)来源于成熟平滑肌细胞(SMC)的Advsca1细胞的亚群(8)。与其他
严重先天性中性粒细胞减少症 (SCN) 是一种单基因疾病。SCN 患者容易发生复发性危及生命的感染。SCN 的主要原因是 ELANE 基因的常染色体显性突变导致中性粒细胞分化受阻。在本研究中,我们使用 CRISPR-Cas9 核糖核蛋白和腺相关病毒 (AAV)6 作为供体模板递送系统来修复 SCN 患者来源的造血干细胞和祖细胞 (HSPC) 中的 ELANE L172P 突变。我们使用了专门针对突变等位基因的单向导 RNA (sgRNA) 和针对 ELANE 外显子 4 的 sgRNA。使用后者 sgRNA,原则上可以修复 34% 的已知 ELANE 突变。我们在 SCN 患者来源的 HSPC 中实现了高达 40%(使用 sg ELANE -ex4)和 56%(使用 sg ELANE - L172P)的基因校正效率。在将 HSPC 移植到人源化小鼠中后,基因修复在体外和体内恢复了中性粒细胞分化。成熟的编辑中性粒细胞表达正常的弹性蛋白酶水平,并在功能测定中表现正常。因此,我们为使用 CRISPR-Cas9 纠正患者来源的 HSPC 中的 ELANE 突变提供了原理证明,这可能转化为 SCN 的基因治疗。
简介血管壁是一种复杂的多层组织,其中包含许多细胞群,可协调维持血管稳态并调节疾病状态下的血管重塑。主要动脉的最外层,Tunica Adventitia,由周细胞,成纤维细胞,脂肪细胞,WBC和常驻祖细胞/干细胞组成,均由细胞外基质,血管周围脂肪和Vasa vasorum(1-5)组成。外在重塑发生在慢性血管疾病或急性血管损伤之后,随着外在细胞的增殖,分泌促炎性细胞因子募集循环循环的白细胞,并增加细胞外基质沉积,从而导致慢性血管炎症和慢性血管炎症和僵硬(6,7)。在膜中发现的细胞群体,干细胞抗原-1 +祖细胞(ADVSCA1细胞)已成为兴趣增加的群体,因为这些多能细胞表现出具有特定分化能力的显着异源性基因性,因此对于病理脉管脉冲重塑和血管造成的维修可能很重要(3)。使用平滑肌细胞 - 特异性谱系跟踪和RNA-Seq,我们的组表征了通过原位重编程过程(称为ADVSCA1-SM细胞)来源于成熟平滑肌细胞(SMC)的Advsca1细胞的亚群(8)。与其他
内皮-间质转化已被描述为肿瘤中间质基质的来源,而肿瘤血管生成和血管生成中则提出了相反的过程。人类致癌病毒卡波西肉瘤疱疹病毒 (KSHV) 可以调节这两个过程,以便在感染 KS 致癌祖细胞时通过这种转变“大道”。内皮或间质循环祖细胞可以充当由炎性细胞因子募集的 KS 致癌祖细胞,因为 KSHV 可以通过内皮-间质和间质-内皮转化将一种细胞重新编程为另一种细胞。通过这些新见解,我们揭示了 KS 潜在致癌祖细胞的身份,同时了解了间充质内皮分化轴的生物学,并指出该轴是 KS 的治疗目标。
PRE CTGGGCTACACTGAGCACC TGACAGGTGGTGGCAATGCC OCT4 CCTCACTTCACTGCACTGTA CAGGTTTTCTTTCCCTAGCT SOX2 TTCACATGTCCCAGCACTACCAGA TCACATGTGTGAGAGGGGCAGTGTG C NANOG TCACACGGAGACTGTCTCTC GAACACAGTTCTGGTCTTCTG ABCG2 TACCTGTATAGTGTACTTCAT GGTCATGAGAAGTGTTGCTA chr12 位置 (24306644) TCTTCTTCAGGCTTTGCTTGCAGG GGTAGGAGTAGAAGGGTGGC OR2W4P GTGGGTTTCTCTGATCGTCCCA GGAAGAACTGTTCCTGGCTGC GPR107 CTGCCAAGCTGCTGTACTTCAA TCTTACGTGCTCCAAAGGCTGA BiP AGGACAAGAAGGAGGACGTGG GGTTGGAGGTGAGCTGGTTC Bcl-XL GGGTTCCCTTTCCTTCCATC AGTGGCCCCTAAATGGCTCT
摘要:血小板是主要在骨髓中产生的巨核细胞的末端后代,在血液稳态,凝结和伤口愈合中起关键作用。传统上,巨核细胞和血小板被认为是由多个离散的祖细胞(HSC)引起的,这些造血细胞(HSC)通过多个离散的祖细胞,并具有连续的,谱系限制的差异步骤。然而,最近的研究挑战了这种观点,该研究表明(1)某些HSC克隆有偏见和/或仅限于血小板谱系,(2)并非所有血小板都会产生遵循“典型”巨核细胞分化路径的造血性巨核细胞,以及(3)血小板输出量是稳定稳定性稳定稳定性稳定型Hematopoiesisis septecteale septectea。在这里,我们特别研究了体内谱系追踪研究提供了血小板生成的途径的证据,并研究了各种中间祖细胞群体的参与。我们进一步确定了确定这些可能替代途径的存在,角色和动力学所需的挑战。
抽象目标赫希斯普伦病(HSCR)是一种严重的先天性疾病,影响1:5000活产。HSCR是由于肠神经系统(ENS)祖细胞在胚胎发育过程中完全定植胃肠道的失败而导致的。这会导致远端肠中炎症病,导致运动活性干扰和蠕动受损。当前,唯一可行的治疗选择是对静脉肠道的手术切除。然而,患者经常患有终身症状,经常需要进行多种外科手术。因此,替代治疗选择至关重要。一种有吸引力的策略涉及人类多能干细胞(HPSC)产生的ENS祖细胞的移植。设计ENS祖细胞是使用加速方案从HPSC生成的,并通过单细胞RNA测序,蛋白质表达分析和钙成像的结合详细介绍了。我们使用器官浴收缩力在体内移植向有机型培养的患者衍生的结肠组织后,测试了ENS祖细胞在HSCR结肠中整合和影响功能反应的能力。结果我们发现,我们的方案始终产生具有早期ENS祖细胞的转录和功能标志的细胞群的高收率。移植后,HPSC衍生的ENS祖细胞在外植的人类HSCR结肠样品中整合,迁移并形成神经元/胶质。与对照组织相比,移植的HSCR组织表现出显着增加的基础收缩活性和对电刺激的反应增加。结论我们的发现首次证明了HPSC衍生的ENS祖细胞在人类HSCR患者结肠组织中重新填充和增加功能反应的潜力。
神经干细胞 (NSC) 是产生神经胶质细胞和神经元的祖细胞群,具有持久的自我更新和分化潜力。虽然胚胎神经系统中的一些神经祖细胞 (NP) 也寿命长且符合这一定义,但 NSC 一词传统上指成年个体中的此类祖细胞类型。随着在斑马鱼 (Danio rerio) 成年脑中发现大量 NSC 群及其高神经发生活性(包括神经元再生),这种模型生物已成为表征和机制分析 NSC 特性的有力工具。基于这些,本文将考虑成年斑马鱼脑中的 NSC,重点关注其最广泛表征的区域 - 端脑(特别是其背部 - 大脑皮层)。只要有必要,我们还会参考其他大脑分区、胚胎过程和成年小鼠的大脑,无论是为了比较的目的,还是因为这些其他系统中有更多信息可用。