成人弥漫性神经胶质瘤是最困难的脑部疾病之一,部分原因是缺乏对肿瘤迁移的解剖学起源和机制的明确性。虽然研究神经瘤传播网络的重要性至少已久至80年,但直到最近才出现了在人类进行此类调查的能力。在这里,我们全面回顾了脑网络映射和神经胶质瘤生物学的领域,为有兴趣合并这些调查领域的研究人员提供了入门,以进行转化研究。具体来说,我们追踪了脑网络图和神经胶质瘤生物学中思想的历史发展,突出了探索网络神经科学,弥漫性神经胶质瘤和神经胶质瘤 - 神经元相互作用的临床应用的研究。我们讨论了已合并神经肿瘤学和网络神经科学的最新研究,发现神经胶质瘤的空间分布模式遵循内在的功能和结构性脑网络。最终,我们呼吁从网络神经影像中做出更多贡献,以实现癌症神经科学的转化潜力。
哺乳动物新皮层是最近的进化结构,与人类的认知能力较高有关。新皮层的大小和形状在妈妈的种类中也有所不同,甚至在灵长类动物中(Herculano-Houzel 2019; Rakic 2009; Zilles等,2013年)。与其他灵长类动物相比,人类在对现代人类的发展过程中获得了最扩展,最复杂的新皮层(Rakic 2009)。新皮质扩张取决于神经茎和祖细胞(NPC)的增殖能力以及随后的神经元产生(Cárdenasand Borrell 2020; Lamonica等,2012; Namba and Huttner 2017; Namba and Huttner 2017; Rash efters 2017; Rash及其他2019; Sun and Hevner 2014; sun and Hevner 2014;图》;1)。npc可以分为两个主要类别:顶端祖细胞(AP),主要由顶端radial胶质神经胶质(ARG,也称为心室径向胶质胶质,VRG)和基础祖细胞(BPS)组成,这些祖细胞(BPS)包括基础中间的祖先(BIPS)和基底radial Glia(也称为BRG)(BRG)(BR GLIA)(BR GLIA)(BR GLIA)(BR GLIA)(BR GLIA,ORADIAL,ORADIAL as COL)。AP和BP分别位于发育中的新皮层的心室(VZ)和室室(SVZ)中。arg主要在新皮层的早期发展期间扩大了数量,然后在中期到后期开始生产BP(Cárdenasand Borrell 2020; Namba and Huttner 2017; Sun and Hevner 2014)。自
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
哺乳动物脑皮质的进化膨胀和折叠是由胚胎发育过程中祖细胞扩增的。从近亲分裂后,在啮齿动物谱系中逆转了此过程,导致大脑较小且光滑。啮齿动物进化中这种继发损失的遗传机制仍然未知。我们表明,microRNA mir-3607在远离灵长类动物和雪貂的大型皮质中以胚胎的形式表达,远离灵长类动物的谱系,但在小鼠中却没有。miR -3607在胚胎小鼠皮质中的实验表达导致Wnt/ -catenin信号传导增加,径向胶质神经胶质细胞的扩增(RGC)和心室区域(VZ)的扩展,通过阻断 -catenin抑制剂APC(腺苷polypismatom polypismis Coli)。因此,雪貂中内源性miR-3607的损失减少了RGC增殖,而人脑器官的过表达促进了VZ的扩张。我们的结果确定了一个在哺乳动物进化过程中选择用于次要损失的基因,以限制啮齿动物中的RGC扩增和可能的皮质大小。
图1. 分化后的Cas9+ER-Hoxb8分化中性粒细胞与原代中性粒细胞十分相似。(A)流式细胞术分析分化0、3、4天的Cas9+ER-Hoxb8细胞。(B)在有和没有G-CSF的情况下,分化4天后CD11b和Ly6G染色的流式细胞术分析。(C、D)分化前(C)(D)和分化4天后的Cas9+ER-Hoxb8的TEM。(E)分化2天后Cas9+ER-Hoxb8的基因表达谱与Immunology Genomes数据库中的RNAseq数据进行比较。Y轴表示不同细胞类型的log2(基因表达值/所有基因的平均表达值);从左到右依次为:巨噬细胞(MF_PC、MF_Fem_PC、MF_226+II+480lo_PC、MF_RP_Sp、MF_Alv_Lu、MF_pIC_Alc_Lu、MF_microglia_CNS、MF_AT)、单核细胞(Mo_6C+II-_Bl、Mo_6C-II-)、中性粒细胞(GN_BM、GN_Sp、GN_Thio_PC)和肥大细胞(MC_heparainase_PC)。所有数据代表至少 2 次实验。
引言神经血管单元(NVU)由神经元,血管内皮细胞,细胞外基质和血管周围星形胶质细胞,小胶质细胞和周细胞组成,以维持血脑/视网膜屏障和局部CNSSOSTOSTOSIS。NVU的破坏是中枢神经系统的各种缺血/神经退行性疾病的病理生理学的核心,包括缺血性中风,帕金森氏症,帕金森氏症,阿尔茨海默氏症,多发性硬化症,肌萎缩性侧面硬化症和糖尿病性视网膜病变(1-3)。缺血促进了CNS重塑,其中NVU的神经元,神经胶质和微血管细胞之间的神经血管串扰支持有利于组织恢复的微环境。Since multicellular crosstalk between local vascu- lar networks and the neurons they supply in the NVU is critical to maintaining physiological function, one regenerative therapeutic strategy is to repair the dysfunctional NVU using progenitor and/or stem cells to provide support to the complex of vascular endothelial cells and surrounding CNS parenchyma that are functionally coupled and interdependent (4).最近的研究支持使用称为内皮结肠构成细胞(ECFC)的内皮祖细胞的使用来实现这种作用。ECFC在缺血区域的所在地,在许多缺血/神经退行性中枢神经系统疾病的动物模型中表现出有效的救助作用(5-10)。作为大脑的易于访问且可视化的扩展,视网膜是用于建模新型治疗剂临床前发育的缺血/神经退行性中枢神经系统疾病的特殊实验系统。证据表明,ECFC的治疗机制主要是旁分泌。在视网膜缺血/变性的鼠模型中进行的实验提供了证据证据证据,表明ECFC(和其他茎/祖细胞)神经营养不良的支撑可从经历凋亡中引起视网膜神经元(11-17)。尽管在体内具有缺血性/神经退行性CNS疾病模型中其有效的救助效应,但已经观察到脑血管内部的ECFC植入水平较低(5-10)。ECFCS的缺血区域,并假定血管周围位置
* 材料和通信请发送至 RND 和 TJN Tomasz.Nowakowski@ucsf.edu 和 Ryan.N.Delgado@gmail.com。作者贡献 RND 构思了该项目,设计并生成了 STICR 条形码库,设计和开展了实验,分析了数据并撰写了稿件。DEA 帮助设计实验、开展实验、分析数据并帮助撰写稿件。MGK 帮助设计实验、开展实验并帮助撰写稿件。WRML 进行了异种移植。RSZ 帮助构建了 STICR 库。EEC 进行了 PTPRZ1 FACS。AAB 帮助指导研究。TJN 构思了该项目,帮助设计实验,协助解释数据并帮助撰写稿件。† 共同第一作者
deena主题1,Guanlin Wang 2.3,Elizabeth F. Heuston 4,基督徒1,Bethan Psala 3,3,3
肿瘤抑制磷酸酶和Tensin同源物(PTEN)负调节胰岛素信号通路。种系PTEN致病性变异引起与儿童脂肪瘤发育相关的PTEN Hamartoma肿瘤综合征(PHTS)。脂肪祖细胞(APC)在连续培养过程中失去了分化为脂肪细胞的能力,而PHTS患者的脂肪瘤的APC在长时间内保留其脂肪生成潜力。仍然不清楚哪种机制会触发这种异常的脂肪组织生长。为了研究PTEN在脂肪组织发育中的作用,我们进行了功能性测定和对照和PTEN敲低APC的RNA-SEQ。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。 已知叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。 FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。 sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。 为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。 我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。细胞衰老是PTEN敲低与对照细胞的RNA-Seq中发现的最显着富集的途径。这些结果提供了证据,表明PTEN参与了APC增殖,差异和衰老的调节,从而导致PHT患者的异常脂肪组织生长。
近端或远端肺细胞是由干细胞按顺序谱系分化到内胚层,然后进入前肠内胚层,进一步分化为双能肺祖细胞而产生的。每个发育阶段的典型标记以圆圈表示。在分支形态形成过程中,可以通过近端内胚层祖细胞谱系中的 SOX2 表达和远端内胚层祖细胞谱系中的 SOX9 表达来区分发育中的近端-远端轴。进一步成熟后,近端祖细胞将变成 P63 + 基底细胞,即大气道和小气道的体细胞干细胞,而远端祖细胞将变成 SPC + 肺泡 2 型 (AT-II) 细胞,即肺泡区域的体细胞干细胞,它们在受伤后可以自我更新并分化为肺泡 1 型 (AT-I) 细胞。