作者的完整清单:Meek,Claire;剑桥大学,代谢科学研究所; Addenbrooke医院,沃尔夫森糖尿病和内分泌部和临床生物化学。Oram,Richard A;皇家德文郡和埃克塞特医院,糖尿病研究系麦当劳,蒂莫西J;皇家德文郡和埃克塞特医院,糖尿病研究系; Denice糖尿病研究系Feig皇家德文郡和埃克塞特NHS基金会信托基金;西奈山医院 - 蒙特利尔哈特斯利,安德鲁·T;皇家德文郡和埃克塞特医院,糖尿病研究部墨菲,海伦R;东安格利亚大学,诺里奇医学院;伦敦国王学院,妇女和儿童健康系; Addenbrooke医院,沃尔夫森糖尿病和内分泌诊所Oram,Richard A;皇家德文郡和埃克塞特医院,糖尿病研究系麦当劳,蒂莫西J;皇家德文郡和埃克塞特医院,糖尿病研究系; Denice糖尿病研究系Feig皇家德文郡和埃克塞特NHS基金会信托基金;西奈山医院 - 蒙特利尔哈特斯利,安德鲁·T;皇家德文郡和埃克塞特医院,糖尿病研究部墨菲,海伦R;东安格利亚大学,诺里奇医学院;伦敦国王学院,妇女和儿童健康系; Addenbrooke医院,沃尔夫森糖尿病和内分泌诊所
Key points: - IVTsgRNAs in K562 predict response to highly effective genome editing in HSPCs - Low cost and efficient nucleofection protocols for RNP based editing in K562 and HSPCs - Genome editing efficiencies in HSPCs up to 80% is independent of cell number, and CD34 subpopulations are equally sensitive for genome editing - CRISPR-Cas9 gene editing does not impact细胞增殖和分化或长期p21诱导细胞衰老
严重先天性中性粒细胞减少症 (SCN) 是一种单基因疾病。SCN 患者容易发生复发性危及生命的感染。SCN 的主要原因是 ELANE 基因的常染色体显性突变导致中性粒细胞分化受阻。在本研究中,我们使用 CRISPR-Cas9 核糖核蛋白和腺相关病毒 (AAV)6 作为供体模板递送系统来修复 SCN 患者来源的造血干细胞和祖细胞 (HSPC) 中的 ELANE L172P 突变。我们使用了专门针对突变等位基因的单向导 RNA (sgRNA) 和针对 ELANE 外显子 4 的 sgRNA。使用后者 sgRNA,原则上可以修复 34% 的已知 ELANE 突变。我们在 SCN 患者来源的 HSPC 中实现了高达 40%(使用 sg ELANE -ex4)和 56%(使用 sg ELANE - L172P)的基因校正效率。在将 HSPC 移植到人源化小鼠中后,基因修复在体外和体内恢复了中性粒细胞分化。成熟的编辑中性粒细胞表达正常的弹性蛋白酶水平,并在功能测定中表现正常。因此,我们为使用 CRISPR-Cas9 纠正患者来源的 HSPC 中的 ELANE 突变提供了原理证明,这可能转化为 SCN 的基因治疗。
抽象的终端选择器是转录因子(TF),它们在发育过程中建立并在整个生命中保持有丝分裂神经元身份。我们先前表明,秀丽隐杆线虫胆碱能运动神经元(MNS)的末端选择器UNC-3/EBF间接起作用,以防止替代性神经元认同(Feng等,2020)。在这里,我们在全球范围内确定UNC-3的直接目标。出乎意料的是,我们发现MN中的UNC-3目标套件在不同的生命阶段进行了修改,从而揭示了终端选择器函数中的“时间模块”。在所有幼虫和成人阶段中,unc-3是连续表达各种蛋白质类所必需的(例如,受体,转运蛋白)对于Mn功能至关重要。然而,仅在幼虫和成年后期,需要UNC-3才能保持MN特异性TF的表达。通过基因组工程对UNC-3的时间模块的最小破坏会影响运动。 另一个秀丽隐杆线虫末端选择器(UNC-30/pitx)也表现出时间模块,支持该机制控制神经元认同的潜在通用性。通过基因组工程对UNC-3的时间模块的最小破坏会影响运动。另一个秀丽隐杆线虫末端选择器(UNC-30/pitx)也表现出时间模块,支持该机制控制神经元认同的潜在通用性。
识别在发育、再生和疾病状态下产生分化细胞类型的祖细胞对于理解控制此类转变的机制至关重要。一个多世纪以来,人们开发了不同的谱系追踪策略,这有助于解开祖细胞与其后代之间的复杂关系。在这篇综述中,我们讨论了谱系追踪分析如何随着技术进步而发展,以及这种方法如何有助于在不同细胞分化背景下识别祖细胞。我们还重点介绍了几个例子,其中谱系追踪实验有助于解决长期存在的争论和识别意想不到的细胞起源。本讨论强调了这一百年来描绘细胞谱系关系的探索如何仍然活跃,并且随着新方法的发展,人们正在取得新的发现。
Antonella FM Dost, 1 , 2 , 3 , 17 Aaron L. Moye, 1 , 2 , 3 , 17 Marall Vedaie, 4 , 5 Linh M. Tran, 6 Eileen Fung, 7 Dar Heinze, 4 , 8 Carlos Villacorta-Marting, 5 , 19 , Ryan Heman Julian H. Kwan, 9 , 10 Benjamin C. Blum, 9 , 10 Sharon M. Louie, 1 , 2 , 3 Samuel P. Rowbotham, 1 , 2 , 3 Julio Sainz de Aja, 1 , 2 , 3 Mary E. Piper, 11 Preetida J. Bhetariya , 1 , 1 , T Roderick . Bronson, 12 Andrew Emili, 9 , 10 , 13 Gustavo Mostoslavsky, 4 , 8 Gregory A. Fishbein, 14 William D. Wallace, 14 , 15 Kostyantyn Krysan, 6 Steven M. Dubinett, 6 , 16 Jane Yanaga , 17 , 4 , 4 * Darrell * N. , * and Carla F. Kim 1 , 2 , 3 , 18 , * 1 Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA 2 Harvard Stem Cell Institute, Cambridge, MA 02133 Department of Genetics, Harvard Medical School, MA, Boston 5, USA 4 Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA 5 The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA 6 Department of Medicine, David Geffen School of Medicine at UCLA, University of Los Angeles, Los Angeles, CA, David Geffen School of Medicine, CA cine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA 8 Section of Gastroenterology and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA 9 Center for Network Systems Biology, Boston University, Boston, MA 02118, USA 10 Department of Biochemistry, Boston University School of Medicine, MA, MA of Public Health, Department of Biostatistics, Boston, MA 02115, USA 12 Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA 13 Department of Biology, Boston University, Boston, MA 02215, USA 14 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA 15 Department of Pathology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA 16 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA 17 These authors contributed equally 18. Contact: Contact Letters: Connected with Legal. JY), dkotton@bu.edu (DNK), carla.kim@childrens.harvard.edu (CFK) https://doi.org/10.1016/j.stem.2020.07.022
巨核细胞系通常是未成熟细胞,不能转化为成熟的巨核细胞并产生血小板。正因为如此,使用细胞系或原代细胞对巨核细胞和血小板进行的一些常规研究被证明是有问题的。在本研究中,我们使用最近从人类诱导多能干 (iPS) 细胞建立的永生化巨核细胞祖细胞系 (imMKCL) 来阐明阿那格雷抑制血小板生成的分子机制。我们按如下方式制备 imMKCL。将含有 c-MYC、BMI1 和 BCL-XL 的强力霉素诱导慢病毒载体引入 imMKCL 以临床生产人工生成的血小板。6-8 去除强力霉素后,三种过表达的转基因被关闭;细胞开始分化,血小板在大约 5-7 天内生成(图 1A)。为了增强血小板的生成,在第 0 天添加了以下化合物:芳基烃受体拮抗剂 (SR1;美国马萨诸塞州默克密理博)、ROCK 抑制剂 (Y-27632;日本东京和光) 和 KP-457 (日本东京 Kaken Pharmaceutical Co. Ltd.)。KP-457 可有效保留糖蛋白 Ib (GPIb),也称为 CD42。如果没有它,GPIb 细胞外结构域的丢失会削弱血小板粘附细胞外基质并形成血栓的能力。9
PRE CTGGGCTACACTGAGCACC TGACAGGTGGTGGCAATGCC OCT4 CCTCACTTCACTGCACTGTA CAGGTTTTCTTTCCCTAGCT SOX2 TTCACATGTCCCAGCACTACCAGA TCACATGTGTGAGAGGGGCAGTGTG C NANOG TCACACGGAGACTGTCTCTC GAACACAGTTCTGGTCTTCTG ABCG2 TACCTGTATAGTGTACTTCAT GGTCATGAGAAGTGTTGCTA chr12 位置 (24306644) TCTTCTTCAGGCTTTGCTTGCAGG GGTAGGAGTAGAAGGGTGGC OR2W4P GTGGGTTTCTCTGATCGTCCCA GGAAGAACTGTTCCTGGCTGC GPR107 CTGCCAAGCTGCTGTACTTCAA TCTTACGTGCTCCAAAGGCTGA BiP AGGACAAGAAGGAGGACGTGG GGTTGGAGGTGAGCTGGTTC Bcl-XL GGGTTCCCTTTCCTTCCATC AGTGGCCCCTAAATGGCTCT
研究描述(特定于此数据集的原始摘要,以及纳入/排除标准):内皮损伤是动脉粥样硬化及其后遗症发病机制中的早期事件。实验研究表明,循环内皮祖细胞 (EPC) 通过整合到内皮损伤部位或释放自分泌/旁分泌因子,有助于维持内皮完整性。先前的人类研究表明,具有多种冠状动脉危险因素或已确诊冠状动脉疾病的个体的 EPC 数量和功能会降低。目前尚不清楚常见的遗传变异是否解释了循环 EPC 的一些个体间差异。影响这些分子浓度的遗传变异可能会改变对内皮功能障碍和冠状动脉疾病的易感性。
表S1。 定量实时PCR的引物序列表S1。定量实时PCR的引物序列