教授。 J.L. Casti(美国圣达菲研究所) C.G.兰顿(美国圣达菲研究所) W.B.Arthur教授(美国圣达菲研究所) J.M. Epstein教授(美国布鲁金斯学会) S. Rasumussen教授(美国圣达菲研究所) T.S.Ray 博士(ATR,日本) T.Gomi教授(AAI,加拿大) M. Raibert 教授(美国麻省理工学院) C. Looney(大学) A.P. Wang教授(美国亚利桑那州立大学); H.H. Natsuyama教授(美国加州州立大学) R.E.(大学)) W.R.威尔斯(大学) D.J.G. 詹姆斯:; (英国考文垂大学)Prof. W.R.威尔斯(大学) Y.G.Zhang教授(中央研究院、CffiNA) J.J. Lee 教授(韩国科学技术院) G.I.Marchuk 教授(俄罗斯科学院:;, 俄罗斯) S.Ueno 教授(日本京都计算机学院) S.Fujimura教授(日本东京大学) H.Miura(日本东京大学) S.Arimoto教授(日本东京大学) Y.Nishikawa教授(日本京都大学) S. Kitamura 教授(日本神户大学) K.Tsuchiya(日本京都大学) T.Jinzenji教授(日本东北大学) K.Abe(日本东北大学)H.Hagiwara(日本京都计算机学院) H.Tanaka 教授(日本东京医科齿科大学) T.Mushya 教授(日本东京理科大学) T. Fukuda 博士(日本名古屋大学) K.Mastuno 博士(日本通产省、产业技术省) K.Tamura(日本通产省、产业技术省) Y.Tokura博士(ATR,日本) K.Shimohara博士(ATR,日本) K.Kyuma(日本三菱电机) T. Yamakawa 教授(日本九州工业大学) T.Nagata(日本九州大学) M.Nakamura 教授(日本佐贺大学) H.Kashiwagi(日本熊本大学)Prof .M.Sugisaka(日本大分大学)(主席)
1989 年,在日本神户举行的第 9 次日泰联合贸易经济委员会会议期间,日本经济团体联合会(现日本经济团体联合会)和泰国工业联合会(FTI)的代表意识到,为了促进泰国的工业发展,需要建立工科专业,所有讲座和实验课程都将由具有博士学位的高素质教师用英语授课。1992 年,日本经济团体联合会、FTI 和法政大学达成合作协议,在法政大学建立工科学士学位课程,初始资金由日本经济团体联合会和 FTI 提供。经过两年的成功运营,“国际技术学院(IIT)”于 1994 年 9 月 16 日成立。泰国公主玛哈·扎克里·诗琳通亲切地主持了法政大学 Rangsit 中心新大楼的奠基仪式。 1996 年 6 月 28 日,已故泰国国王普密蓬·阿杜德陛下慷慨地为该学院取了一个新名字——“诗琳通国际技术学院 (SIIT)”。1997 年 10 月 2 日,诗琳通公主殿下慷慨地主持了诗琳通国际技术学院的名称和建筑落成典礼。1999 年,FTI 在邦卡迪工业园 (BKD) 提供了一块土地和一栋现有建筑,供 SIIT 使用 30 年。2001 年 6 月,前总理阿南·巴雅拉春在邦卡迪为信息技术和计算机科学课程的新建筑揭幕。 2006 年 6 月 28 日,诗琳通公主殿下亲切地主持了位于邦卡迪的诗琳达莱大楼的落成典礼。这座新的六层建筑内设有信息、计算机和通信技术学院 (ICT)、管理技术学院 (MT)、图书馆、计算机中心、实验室和教室。诗琳通国际技术学院的三个创始机构的背景简要介绍如下。
a 日本京都大学医学院皮肤科 b 日本京都大学医学院儿科 c 日本京都大学医学院血液科 d 日本京都大学医学院风湿病和临床免疫学系 e 日本京都大学医学院生物医学统计学和生物信息学系 f 日本高知大学高知医学院皮肤科 g 日本中央区山梨大学医学院皮肤科 h 日本大阪红十字大阪医院皮肤科 i 日本越谷独协医科大学埼玉医疗中心皮肤科 j 日本尾道市 JA 广岛高中联尾道综合医院皮肤科诊所 k 日本赞岐市立赞岐医院内科 l 鹿儿岛大学医学院皮肤科日本鹿儿岛牙科学院 m 日本川崎圣玛丽安娜大学医学院皮肤病学系 n 日本福岛福岛医科大学医学院风湿病学系 o 日本京都府立医学院医学系血液学和肿瘤学分部 p 日本仓敷川崎医学院风湿病学系 q 日本仓敷川崎医学院免疫学和分子遗传学系 r 日本神户市立医疗中心综合医院皮肤病学系 s 日本金泽大学医学院风湿病学系 t 日本伊丹市立医院诊断病理学系 u 日本东京医科大学皮肤病学系 v 日本名古屋市立大学医学院老年和环境皮肤病学系 w 日本名古屋研究生院皮肤病学系日本广岛大学生物医学与健康科学学院 x 日本广岛市民医院皮肤科 y 日本所泽国防医学院皮肤科 z 日本东京慈惠大学医学院皮肤科 aa 日本西宫兵库医科大学皮肤科
1 阿贡国家实验室,美国伊利诺伊州莱蒙特 60439 2 罗伯特·博世有限公司企业部门研究和先进工程,Robert-Bosch-Campus 1,D-71272 Renningen,德国 3 IBM Research,里约热内卢,20031-170,RJ,巴西 4 巴西物理研究中心,里约热内卢,22290-180,RJ,巴西 5 CINECA,via Magnanelli 6/3,40033 Casalecchio di Reno,BO,意大利 6 亚利桑那州立大学,亚利桑那州坦佩,美国 7 国家能源研究科学计算中心,劳伦斯伯克利国家实验室,加利福尼亚州伯克利,美国 8 多诺斯蒂亚国际物理中心 (DIPC),20018 多诺斯蒂亚-圣塞瓦斯蒂安,巴斯克,西班牙 9 Ikerbasque,巴斯克科学基金会, 48009 毕尔巴鄂,西班牙 10 延世大学物理系,首尔 03722,韩国 11 芝加哥大学,美国伊利诺伊州芝加哥 12 IBM Quantum,IBM TJ Watson 研究中心,纽约州约克敦高地 10598,美国 13 剑桥咨询公司,凯捷创新公司的一部分,英国剑桥 14 欧洲核子研究中心 (CERN),瑞士日内瓦 1211 15 弗吉尼亚理工大学,弗吉尼亚州布莱克斯堡 24061,美国 16 洛斯阿拉莫斯国家实验室,新墨西哥州洛斯阿拉莫斯 87545,美国 17 大阪大学,日本大阪 560-8531 18 芝加哥大学理论化学中心化学系,美国伊利诺伊州芝加哥 19 Fraunhofer ITWM,德国莱茵兰-普法尔茨州凯泽斯劳滕 67663 20 Infleqtion,伊利诺伊州芝加哥60622,美国 21 伊利诺伊大学厄巴纳-香槟分校 22 密歇根大学,密歇根州安娜堡 48109,美国 23 戴尔科技公司,研究办公室 24 橡树岭国家实验室,One Bethel Valley Road,橡树岭,田纳西州 37831,美国 25 日本理化学研究所计算科学中心 (R-CCS),兵库县神户 650-0047,日本 26 多伦多大学化学系化学物理理论组,安大略省多伦多 M5S 3H6,加拿大
1 阿贡国家实验室,美国伊利诺伊州莱蒙特 60439 2 罗伯特·博世有限公司企业部门研究与先进工程,Robert-Bosch-Campus 1,D-71272 Renningen,德国 3 IBM 研究中心,里约热内卢,20031-170,RJ,巴西 4 巴西物理研究中心,里约热内卢,22290-180,RJ,巴西 5 CINECA,意大利博洛尼亚 6 美国亚利桑那州立大学 7 国家能源研究科学计算中心,劳伦斯伯克利国家实验室,美国加利福尼亚州伯克利 8 多诺斯蒂亚国际物理中心 (DIPC),20018 多诺斯蒂亚-圣塞瓦斯蒂安,巴斯克,巴斯克科学基金会,48009,西班牙 10 延世大学物理系,首尔03722,韩国 11 芝加哥大学,美国伊利诺伊州芝加哥 12 IBM Quantum,IBM TJ Watson 研究中心,美国纽约州约克敦高地 10598 13 剑桥咨询公司,Capgemini Invent 的一部分,英国剑桥 14 欧洲核子研究中心 (CERN),瑞士日内瓦 1211 15 弗吉尼亚理工大学,美国弗吉尼亚州布莱克斯堡 24061 16 洛斯阿拉莫斯国家实验室,美国新墨西哥州洛斯阿拉莫斯 87545 17 大阪大学,日本大阪 560-8531 18 芝加哥大学化学系,芝加哥理论化学中心,美国伊利诺伊州芝加哥 19 Fraunhofer ITWM,德国莱茵兰-普法尔茨州凯泽斯劳滕 67663 20 Infleqtion,美国伊利诺伊州芝加哥 60622 21 伊利诺伊大学厄巴纳-香槟分校 22密歇根大学,美国密歇根州安娜堡 48109 23 戴尔科技公司,研究办公室 24 橡树岭国家实验室,One Bethel Valley Road,橡树岭,37831,田纳西州,美国 25 日本理化学研究所计算科学中心 (R-CCS),日本兵库县神户 650-0047 26 多伦多大学化学系化学物理理论组,加拿大安大略省多伦多 M5S 3H6
日本福冈——在《Science Advances》杂志上发表的一项研究中,九州大学工程学院副教授柳井伸宏领导的一组研究人员与九州大学宫田清副教授和神户大学小堀康弘教授合作,报告称他们已经在室温下实现了量子相干性:量子系统能够随着时间的推移保持明确状态而不受周围干扰影响的能力。这一突破是通过将发色团(一种吸收光并发射颜色的染料分子)嵌入金属有机骨架(MOF,一种由金属离子和有机配体组成的纳米多孔晶体材料)中实现的。他们的发现标志着量子计算和传感技术的重大进步。虽然量子计算被定位为计算技术的下一个重大进步,但量子传感是一种利用量子比特(经典计算中比特的量子类似物,可以存在于 0 和 1 的叠加中)量子力学特性的传感技术。可以采用各种系统来实现量子比特,其中一种方法是利用电子的固有自旋(与粒子磁矩相关的量子特性)。电子有两种自旋状态:自旋向上和自旋向下。基于自旋的量子比特可以存在于这些状态的组合中,并且可以“纠缠”,从而允许从另一个量子比特推断出一个量子比特的状态。通过利用量子纠缠态对环境噪声极其敏感的特性,量子传感技术有望实现比传统技术更高的分辨率和灵敏度的传感。然而,到目前为止,将四个电子纠缠并使其对外部分子作出反应,即使用纳米多孔 MOF 实现量子传感一直具有挑战性。值得注意的是,发色团可用于在室温下通过称为单重态裂变的过程激发具有所需电子自旋的电子。然而,在室温下会导致存储在量子比特中的量子信息失去量子叠加和纠缠。因此,通常只有在液氮水平温度下才能实现量子相干性。为了抑制分子运动并实现室温量子相干性,研究人员在 UiO 型 MOF 中引入了基于并五苯(由五个线性稠合苯环组成的多环芳烃)的发色团。“这项研究中的 MOF 是一种独特的系统,可以密集地积累发色团。此外,晶体内的纳米孔使发色团能够旋转,但角度非常受限,”Yanai 说道。
领域内总引用次数(科学信息研究所/ISI) 2010- 过去十年中,位列药理学和毒理学领域全球被引用次数最多的前 100 名(ISI) 2010- 过去十年中,位列临床医学、生物学和生物化学领域被引用次数最多的前 1%(ISI) 2011 年 6 月- 当选为美国心脏病学会院士 2011 年 - 被 AJP Cell Physiology 编辑评选为“明星审稿人”(2011 年 FASEB 会议公布) 2011 年 1 月- 德克萨斯大学医学分校麻醉学系兼职教授 2011- 美国国家癌症研究所 (NCI) 癌症氧化还原生物学学院指导委员会成员 2008 - Sanofi Aventis 奖 2007- Thomson ISI,药理学领域的突破性论文:P Pacher、S Batkai、G Kunos。内源性大麻素系统作为药物治疗的新兴靶点。药理学评论 2006;9 月;58(3):389-462。(被引用超过 2650 次(Google 学术搜索),2006-2009 年药理学领域被引用次数最多的第 5 篇论文,Scopus)。药理学评论史上最热门的论文(Altmetrics 得分 1078)。2007 - ISI:生物化学热门论文;2007 年以来生理学评论中被引用次数最多的论文:P Pacher、JS Beckman、L Liaudet。一氧化氮和过氧亚硝酸盐与健康和疾病的关系。生理学评论 2007; 1 月;87(1):315-424(被引用超过 7600 次(谷歌学术);#2 生物学/生物化学领域被引用次数最多的论文,Essential Science Indicators,Thomson 2009;被《Physiological Reviews》编辑评选为 2008、2009、2010、2011 年最热门论文);跻身《Physiological Reviews》有史以来被引用次数最多的前 5 篇论文之列。 2006/2007 - 4 项 NIH/NIAAA 出版物奖 2006- 当选美国心脏协会会员 2006 - 当选美国生理学会心血管分会会员 2004 - 最佳海报奖,国际心脏研究学会,澳大利亚布里斯班 2004- 日本奈良一氧化氮学会奖 2004- 美国国立卫生研究院,贝塞斯达研究卓越奖 2000-2001 青少年糖尿病协会博士后奖学金奖 1999- Sigma-Aldrich 研究奖 1999- 匈牙利药理学会青年研究人员竞赛奖 TEVA-Biogal 制药公司最佳中枢神经系统药物开发方案科学研究奖,匈牙利布达佩斯 1998- 国际妊娠高血压研究学会(ISSHP)青年研究员奖日本神户 1997-1999 年:匈牙利药理学会青年研究员竞赛奖。旅行奖: 1997-1999 年:ISSHP 旅行奖;索罗斯基金会旅行奖;匈牙利药理学会旅行奖
去年,也就是 2022 年,我们举办了两次 NSAT,第 10 届 NSAT 在第 33 届 ISTS 别府,第 11 届 NSAT 在土耳其伊斯坦布尔,我们从技术、应用、商业、法律等角度热烈讨论了微型/纳米/皮卫星的最新进展和未来。不幸的是,我担任总主席的第 33 届 ISTS 最终改为在线研讨会,所以我很高兴我们这次能在久留米面对面地参加 ISTS。正如你们所看到的,小型/微型/纳米/皮卫星现在不仅用于教育或技术演示,还已应用于各种实际任务,包括地球观测、空间科学和探索、通信等,从而成为太空业务的核心资产之一。我们目睹了太空开发和利用方式的两大变化:“从政府到私营部门”和“小型/微型/纳米卫星星座”。一些著名的初创公司如 SpaceX、Planet、Spire Global、Rocket Lab 成长非常迅速,它们基于小型/微型/纳米卫星星座做大生意,有时甚至从美国政府获得大笔“锚定租赁”合同。卫星星座可以提供更高的“时间分辨率”,即频繁提供服务,但它也提供了机会,不是一次性开发大量卫星群,而是分几批开发。这种开发方式将使我们能够根据前几批卫星的在轨结果频繁更新卫星设计。我相信如何实现这种效果不仅是初创公司考虑的关键,也是政府太空计划的关键考虑因素,卫星架构和开发风格将成为新的研究课题。纳米卫星研讨会始于 2010 年,一直致力于探讨微型/纳米/皮卫星的技术、应用、法律问题、教育方面等诸多主题。本次研讨会虽然名为“纳米卫星研讨会”,但其范围已不局限于纳米卫星(约10kg),还涵盖了微型和皮卫星,总重量从约1kg到100kg不等。我所领导的日本“Hodoyoshi计划”在2010年至2013年期间在日本举办了前五届纳米卫星研讨会,其中2013年11月在东京大学举行的第五届研讨会吸引了来自47个国家的约260名代表参加。从第 6 届研讨会开始,NSAT 加入了 ISTS,例如 2015 年神户第 30 届 ISTS 的第 6 届 NSAT、2017 年松山第 31 届 ISTS 的第 8 届 NSAT、2019 年福井第 32 届 ISTS 的第 9 届 NSAT。在国外,保加利亚瓦尔纳于 2016 年主办了第 7 届 NSAT,伊斯坦布尔于 2022 年主办了第 11 届 NSAT。正如我每次提到的那样,持续举办纳米卫星研讨会的重要目标之一是加强我们的微/纳米/皮卫星社区。通过 11 届研讨会,我们在这个领域建立了牢固的社区并建立了友谊,从此开始了一些实际的合作。请允许我借此机会宣布,UNISEC-GLOBAL 的下一次年会将于 2023 年 11 月在东京举行,UNISEC-GLOBAL 是一个国际微/纳米/皮卫星大学社区,也是 NSAT 的主办组织。我希望您也能计划参加这次会议。
Advisory Circuit J. Brittenham,磁盘内存部门,博伊西。爱达荷州 • William W. Brawn,集成电路业务部门。加利福尼亚州圣克拉拉 • Frank J. Calyillo,加利福尼亚州存储部门,格里利。科罗拉多州 • Harry Chou,微波技术部门。圣罗莎。加利福尼亚州 • Derek T, Dang,系统支持部门。Mountain Integrated 加利福尼亚州 • Rajesh Desai,商业系统部门,库比蒂诺。加利福尼亚州 • Kevin G. Ewert,集成系统部门。桑尼维尔。加利福尼亚州 • Bernhard 部门。鲍勃林根医疗部,德国鲍勃林根* Douglas Gennetten。格里利硬拷贝部。科罗拉多州格里利 • Gary Gordon,HP 实验室。帕洛分部。仪器 • Matt J Marline,系统技术部。F/oseville。加利福尼亚州 • Bryan Hoog,Lake Stevens 仪器部,华盛顿州埃弗雷特 • Grace Judy,格勒诺布尔网络部,加利福尼亚州库比蒂诺 • Roger L. Jungerman,微波技术部,圣罗莎。加利福尼亚州 • Paula H. Kanarek,InkJet Components Networked,俄勒冈州科瓦利斯 • Thomas F. Kraemer,科罗拉多斯普林斯分部。科罗拉多州科罗拉多斯普林斯 • Ruby B Lee,网络系统集团,加利福尼亚州库比蒂诺 Moore,Lloyd,日本惠普实验室,日本川崎。Alfred Maute,Waldbronn 分析部门。沃尔德布隆。德国 • Michael P. Moore,Wl 系统部门。全球科罗拉多州 • Shelley I. Moore,圣地亚哥打印机部门。圣地亚哥。罗斯维尔。加利福尼亚州 • Raj Oza。加利福尼亚州 • Dona L Morrill,全球客户支持部门。加利福尼亚州山景城 • William M. Mowson,开放系统软件部门,切姆斯福德。马萨诸塞州 • Steven J. Narciso,VXI 系统部门,洛夫兰。科罗拉多州 « Garry Raj 软件技术部门。软件技术部门。加利福尼亚州山景城 • Han Tian Phua。亚洲外设部门。新加坡 • Ken Poulton。HP 实验室。加利福尼亚州帕洛阿尔托' Günter Riebesell,博布林根仪器部门,德国博布林根 Marc Sabatella,软件电路系统部门,科罗拉多州柯林斯堡 • Michael B,桑德斯。集成电路业务部,俄勒冈州科瓦利斯 «Philip Stenton,惠普实验室柯林斯。布里斯托尔。英国 • Beng-Hang Tay。新加坡网络运营部,新加坡 • Stephen R. Undy,系统技术部。柯林斯堡。科罗拉多州 • Jim Willits,约克和系统管理部,柯林斯堡。科罗拉多州 • Koichi Yanagawa,神户仪器部,日本 « Dennis C. York,科瓦利斯分部。科瓦利斯。俄勒冈州 • Barbara Zimmer,企业工程部,加利福尼亚州帕洛阿尔托
IEEE传感器会议是IEEE传感器委员会的旗舰会议。理事会是传感器爱好者和志愿者的组织,为26个IEEE成员社会提供服务。从2002年开始,IEEE传感器会议就一直是研究人员,工程师,从业人员和学生的论坛,以展示和讨论他们的研究,最佳想法,创新和产品。传统上,会议涵盖了传感器的各个方面,从传感材料到传感系统。今年我们有一个激动人心的程序。会议始于主题研讨会,该研讨会与教程并联。今年,我们邀请社区提出研讨会的想法,并选择了四个。今年,我们比以往任何时候都更加强调我们的计划是行业参与的重要作用。我们在传感器期间继续我们的教程传统,今年提供了14个教程。我们正在继续使用该计划介绍的46篇论文。我们完全收到了1242篇论文提交给14条技术曲目,4次专注的会议和现场演示。在严格的审查过程中,接受了683篇论文,接受率为55%。今年,我们获得了亚太地区提交的57.2%,欧洲29.7%,北美8.9%,拉丁美洲1.1%,中东/非洲的3%。总共有315次讲座和357海报在IEEE传感器2024中呈现。此外,还提出了16次邀请的讲座。所有与会者都有机会在公开海报会议期间呈现其结果,今年介绍了26张公开海报。会议的每一天都以传感器领域的著名专家的主题演讲开始。周一,日本京胡大学的Masaki Hirota将发表题为“在未来运输系统中先进安全,舒适和便利的传感器”的演讲。来自美国芝加哥大学的安德鲁·克莱兰德(Andrew Cleland)将于周二发表一场题为“发射和感知单个表面声波声子”的演讲。 最后,比利时IMEC的克里斯·范·霍夫(Chris van Hoof)将以“农业5.0,食品5.0和健康5.0”的演讲开始会议的最后一天 - 技术和AI如何启用这种激进的转型”。 今年,我们强调了21个参展商的工业研究和产品,在周一由行业组织的轨道和工业会议上,以及有关“高级人体机器界面的身体感测”的工业组织研讨会。 年轻专业人士(YP)委员会在周日的一般欢迎招待会上组织了一场海报会议。 Wise(传感器中的女性),YP,D&I(多样性与包容性)和CEC联席会议也将于周一举行。 明智的委员会邀请您参加周二的网络活动。 YP和Wise共同赞助了周三的大创意比赛。 2024年IEEE传感器期间的社交活动将包括周日的欢迎招待会和周二在Portopia Hotel举行的晚宴。 IEEE传感器2024是基于许多人共同努力的协作努力。来自美国芝加哥大学的安德鲁·克莱兰德(Andrew Cleland)将于周二发表一场题为“发射和感知单个表面声波声子”的演讲。最后,比利时IMEC的克里斯·范·霍夫(Chris van Hoof)将以“农业5.0,食品5.0和健康5.0”的演讲开始会议的最后一天 - 技术和AI如何启用这种激进的转型”。今年,我们强调了21个参展商的工业研究和产品,在周一由行业组织的轨道和工业会议上,以及有关“高级人体机器界面的身体感测”的工业组织研讨会。年轻专业人士(YP)委员会在周日的一般欢迎招待会上组织了一场海报会议。Wise(传感器中的女性),YP,D&I(多样性与包容性)和CEC联席会议也将于周一举行。明智的委员会邀请您参加周二的网络活动。YP和Wise共同赞助了周三的大创意比赛。2024年IEEE传感器期间的社交活动将包括周日的欢迎招待会和周二在Portopia Hotel举行的晚宴。IEEE传感器2024是基于许多人共同努力的协作努力。会议参与者将有机会见到IEEE传感器委员会赞助的期刊的主持人,包括IEEE传感器期刊,IEEE Sensors Letters,IEEE IEEE杂志传感器中的选定区域,IEEE传感器评论,IEEE Internet of There Internet of There Internet Journal和IEEE EEEE Journal on Flivible Electible Electonics。晚宴将与Taiko(日本鼓)表演和Awa Odori表演一起对待与会者,沉浸在传统的日本文化中。,我们感谢所有组织委员会和计划委员会成员为志愿服务和花费大量时间准备会议。我们感谢作者和参与者访问了科比并分享您的想法和想法。我们很高兴在日本神户的IEEE传感器2024与您会面。