摘要:神经科学是研究大脑及其人类如何处理日常活动的学科,一直以来都是其他领域的一部分(例如心理学背景下的神经心理学)。然而,2002 年是 Ale Smidts 教授首次提出神经营销的一年,他将神经营销描述为研究大脑及其如何处理有关消费者背景(购买行为 - 购买方式和原因)的活动。进一步的研究表明,在创造这一术语之前,公司已经通过功能性磁共振成像 (fMRI) 等系统采用神经营销。为了进一步展示其本质,本综述讨论了其历史维度,研究结果表明,神经营销是一个革命性的营销领域。尽管在神经营销背景下进行的实证研究有限,但本综述表明,它可以解决传统营销研究方法带来的可靠性、有效性和普遍性挑战。然而,有人提出,神经营销领域迫切需要基于实证的研究。
摘要。目标。与传统数字计算相比,神经系统中的计算使用不同的计算原语,在不同的硬件上运行,因此在使用时间、空间和能量等物理资源方面受到与数字计算不同的约束。为了更好地理解具有类似时空和能量约束的物理介质上的神经计算,神经形态工程领域旨在设计和实现电子系统,在 VLSI 硬件中模拟神经系统在多个生物组织层面的组织和功能,从单个神经元到大型电路和网络。混合模拟/数字神经形态 VLSI 系统结构紧凑、功耗低,并且独立于模型大小和复杂性实时运行。方法。本文重点介绍了当前在从突触到系统级的多个生物组织层面上将神经形态系统与神经系统进行接口的努力,并讨论了未来具有更复杂神经形态电路的生物混合系统的前景。主要结果。单个硅神经元已成功与无脊椎动物和脊椎动物神经网络接口。这种方法允许研究传统技术无法获得的神经特性,同时提供传统数值建模方法无法实现的真实生物学背景。在网络层面,神经元群有望与数百或数千个硅神经元的神经形态处理器进行双向通信。最近对 BMI 的研究表明,使用当前的神经形态技术可以实现这一点。意义。生物神经元和各种复杂程度的 VLSI 神经形态系统之间的生物混合接口已开始出现在文献中。当前神经形态系统的主要目的是作为研究与神经动力学相关的基本问题的计算工具,其复杂性现在允许与大型神经网络和电路直接接口,从而为神经工程系统、神经假体和神经康复带来潜在的有趣的临床应用。
本研究基于以下假设:国内外神经教育学信息匮乏,有足够多的证据表明需要对神经教育学进行概念化。因此,总体目标是分析神经教育、神经教学法、教师培训和神经教育学之间的关系。数据收集采用 27 项临时李克特量表问卷进行,可靠(Cronbach's Alpha,.973),并通过探索性因子分析(KMO(.843)、Bartlett(Sign.000)、决定因素(9.416E-19))验证其内容和结构。研究样本是从西班牙、巴拉圭、厄瓜多尔、巴西和墨西哥的大学教师中随意选择的,共有 1264 名参与者。研究设计是非实验性的、描述性的、解释性的、相关的和基于回归的。结果表明,教育学的未来必须包括神经教育学,这证明了:1) 神经教育学需要神经教育知识;2) 将神经教学法理解为神经教育学的实际应用;3) 神经定位和神经教育组织的重要性;4) 需要培训培训师。所有这些都得到了神经成像示例的强化,这些示例证明了神经教育学和神经教育学教师培训的必要性。
TBI是一种复杂的状况,需要彻底监测和护理以减少并发症并增强患者的预后。TBI治疗的重要组成部分是神经检查或神经系统评估。必须根据每个患者的特殊需求制定神经检查频率的患者计划,以提供最佳的监测和护理。高危患者需要更频繁的神经检查才能检测出早期损害的迹象。没有足够的分类,需要其他监测的个人可能会被忽略,这可能会影响其神经系统结果。选择每位患者的风险,损伤特征,合并症和其他因素时,选择神经检查频率时。可以通过这种个性化方法对处于较高劣化风险的个人进行监测和处理,而不会对他人的风险较低。医生可以通过根据每个患者的需求来调整神经检查的频率来改善结果并降低del妄的风险。这将仔细观察与患者舒适结合在一起。之后,标准化神经检查频率的困难以及需要更多信息以区分患者在临床实践中的重要性。这是至关重要的
神经辐射场(NERFS)在自动驾驶(AD)社区中广受欢迎。最近的方法显示了NERFS进行闭环模拟的潜力,广告系统的启动测试以及作为先进的培训数据增强技术的潜力。但是,现有的方法通常需要较长的训练时间,密集的语义范围或缺乏普遍性。这反过来妨碍了NERF的应用在大规模上应用于AD。在本文中,我们提出了一种针对动态AD数据量身定制的可靠的新型视图合成方法。我们的方法具有简单的网络设计,凸轮和激光镜头的广泛传感器建模 - 包括滚动快门,梁发散和射线掉落 - 并且适用于开箱即用的多个数据集。我们在五个受欢迎的广告数据集上验证其性能,从而实现最新的性能。为了鼓励进一步开发,我们公开发布了神经源源代码。
摘要:我们提供了多中心研究Palermo-Milan的结果,该研究旨在评估Neuroptimal®的有效性,Neuroptimal®是一种对患有耳鸣的患者有用的新治疗工具。我们假设使用Neuroptimal®可以改善对与之相关的耳鸣和心理物理症状的看法。neuroptimal®是一种训练形式,可以使大脑通过优化其活性自我调节。为了评估其有效性,我们正在对诊断为耳鸣的自愿患者进行一系列非线性神经Timtimal®神经反馈会话,从听力测量和自我评估问卷中收集数据,这些数据是涉及tinnitus和pationnitus and Partionolatigon Caresolovic Cresicaly Caresolovic Cresitic,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑,焦虑和应力的数据。我们说明的结果,尽管需要在更大的样本上进行验证,但却是有希望的,似乎证实了这种独特技术的特征,该技术基于大脑活动,自我调节,神经塑性和学习的基本原理。
问题,例如阿尔茨海默氏病等慢性神经退行性疾病的发生率和急性神经损伤,例如中风,随着全球人群的寿命更长的寿命而增加。但是,这些疾病/疾病很难诊断为需要昂贵的基础设施(脑成像)和/或评估多年。早期诊断会带来独特的治疗干预机会和更好的患者预后。
以神经元结构和功能进行性丧失为特征的神经退行性疾病是现代最具破坏性的健康挑战之一(Gadhave等,2024)。疾病,例如阿尔茨海默氏病(AD),帕金森氏病(PD),多发性硬化症(MS)和肌萎缩性侧面硬化症(ALS),很少有常见的病理标志:神经变性,神经变性,神经蛋白流量,神经蛋白流量和障碍脑脑完整性/连接性/连接性/连接性(COVA等)。中枢神经系统(CNS)完整性中免疫介导的反应的这种复杂相互作用已成为神经元损伤和疾病进展的关键贡献者(Jellinger,2010年)。对该主题的研究越来越多,强调了揭示神经素浮游机制和恢复大脑稳态的重要性,这将为创新的治疗策略铺平道路。这个研究主题,标题为“神经因浮肿和神经退行性疾病),构成了主要研究人员的14个有见地的贡献。共同探索了神经素浮游,生物标志物的诊断潜力以及有希望的治疗途径的分子和细胞基础。提供了有关外围衍生的危险因素(例如2型糖尿病(T2DM),骨关节炎和冠状病毒病2019(CoVID-19)的其他见解。本社论强调了本研究主题中介绍的关键主题和发现。
脑机接口( brain-computer interface , BCI )是在大脑与外部设备之间建立直 接交互的通信和控制通道。行业起步最早可追溯至 1924 年,经历了前期 的理论探索期、科学论证期,目前已进入成果落地时期。脑机接口最早在 20 世纪未提出,目的是帮助残疾人重新行走或支配上肢,技术发展至今已 更能应用于正常人的生活和生产。随着脑机接口、人工智能、生物医学工 程、神经工程与康复工程、认知神经科学与心理科学等的发展, BCI 的内 涵和外延在不断丰富。近年来,脑机接口技术在医疗领域不断取得新成果, 尤其在临床康复领域,目前以脑功能评估为目的的脑机交互检测,以解码 交流与设备控制为目的的脑机接口应用,以功能重塑康复为目的的脑机训 练反馈等领域的探索及应用越来越深入。随着技术的应用领域不断拓宽, 未来将逐步应用于游戏娱乐、学习教育、智能家居和军事领域。
1. Atapattu, KV、Salibi, G. 和 Tzenios, N. (2023)。斯里兰卡科伦坡地区雨季与登革热爆发关系研究。医学研究院和其他生命科学专题杂志。,1 (3)。2. Morton Cuthrell, K.、Tzenios, N. 和 Umber, J. (2022)。自身免疫性疾病的负担;综述。亚洲免疫学杂志,6 (3),1-3。3. Sibanda, AM、Tazanios, M. 和 Tzenios, N. (2023)。社区赋权作为促进健康的工具。4. OFFIONG, BE、Salibi, G. 和 Tzenios, N. (2023)。非洲的医疗人才流失祸害:重点关注尼日利亚。5. Tzenios, N. (2023)。研究中的统计分析。6. JUSTUS, O.、Salibi, G. 和 Tzenios, N. (2023)。监测是疾病预防和控制的基础。7. Fashanu, H.、Tazanios, M. 和 Tzenios, N. (2022)。健康促进计划。剑桥开放参与。