源自蓝细菌的微生物毒素β -N-甲基氨基氨基 - L-丙氨酸(BMAA)靶向神经元线粒体,从而激活神经元的先天免疫,从而激活神经元素。尽管已知会调节脑部炎症,但异常小胶质功能在神经退行性过程中的精确作用仍然难以捉摸。为了确定神经元是否信号小胶质细胞,我们用BMAA处理了原发性皮质神经元,然后将其与N9小胶质细胞系共同培养。我们的观察结果表明,小胶质细胞激活需要初始神经元启动。与皮质神经元中观察到的相反,BMAA无法激活N9细胞中的炎症途径。我们观察到小胶质细胞激活取决于BMAA处理的神经元信号的线粒体功能障碍。在这种情况下,由于N9细胞中的线粒体损伤,NLRP3促炎途径被激活。这些结果表明,在BMAA存在下的小胶质细胞激活取决于神经元信号传导。这项研究提供了证据,表明神经元可能触发小胶质细胞激活和随后的神经炎症。此外,我们至少在初始阶段至少在改善神经元的先天免疫激活中可能具有保护作用。这项工作通过将主要作用分配给神经元来挑战当前对神经炎症的理解。
信用:左上:少突胶细胞 - 彼得·布罗菲教授;右:星形胶质细胞和少突胶质细胞 - Yirui Sun归因:Creative Commons 4.0 International(CC By 4.0) - 井片左下:Francesca Nicholls; Rigiht:小胶质细胞 - NIH(CC PDM 1.0)
摘要 SORCS2 是构成 Vps10p 结构域受体家族的五种蛋白质之一。该家族成员在与神经元存活、分化和功能相关的细胞过程中发挥重要作用。遗传和功能研究表明 SORCS2 与认知功能以及神经退行性和精神疾病有关。DNA 损伤和 DNA 修复缺陷与衰老和神经退行性有关,瞬时神经元 DNA 双链断裂 (DSB) 也是神经元活动的结果。在这里,我们报告了 SORCS2 在 DSB 形成中的新作用。我们表明 SorCS2 丢失与小鼠齿状回中 DSB 水平升高有关,并且在人类神经元细胞系中敲除 SORCS2 会增加拓扑异构酶 IIβ 依赖性 DSB 形成并降低神经元活力。神经元刺激对体外 DNA 断裂水平没有影响,这表明观察到的差异可能不是这些细胞中异常神经元活动的结果。我们的发现与将 VPS10 受体和 DNA 损伤与神经退行性疾病联系起来的研究一致。
背景:人类脑室,1000亿个神经元,每种神经元都会使突触连接的隔离。尽管本身神经元本身可以是复杂的信息处理单元,但正是它们的突触连接模式使神经元能够为特定功能形成专门的电路,从而使大脑成为强大的计算设备。使用解剖学追踪,生理记录,功能扰动和计算建模的数十年研究详细介绍了神经元的连接模式及其功能,范围从少数神经元的微电路量到数百万个神经元的全球组织。在这里,我从电路体系结构的角度综合了这些发现,并讨论了在开发和进化过程中如何出现这些体系结构。
如图 35.2 中所示的各种动物所示,整个动物界的神经系统的结构和复杂程度各不相同。有些生物,比如海绵,没有真正的神经系统。其他生物,比如水母,没有真正的大脑,而是有一个独立但相连的神经细胞(神经元)系统,称为“神经网络”。棘皮动物,如海星,有捆绑成纤维的神经细胞,称为神经。扁形动物门的扁虫既有中枢神经系统 (CNS),由一个小“大脑”和两条神经索组成,也有周围神经系统 (PNS),包含遍布全身的神经网络。昆虫的神经系统更复杂,但也相当分散。它包含大脑、腹神经索和神经节(相连的神经元簇)。这些神经节可以在没有大脑输入的情况下控制运动和行为。章鱼可能拥有最复杂的无脊椎动物神经系统——它们的神经元分布在特殊的脑叶中,并且眼睛的结构与脊椎动物相似。
Vadim Bolshakov 恐惧控制的突触和神经元机制:海马-杏仁核相互作用的作用 陶武晨 GluD1 在大脑中的作用 11:00-11:30 咖啡休息,品尝当地甜点 11:30-1:35 第二节 感觉和神经调节 主席:庄汉婷 宋德华 Cav1.2-Filamin A 相互作用 Uhtaek Oh Tentonin 3,一种具有独特结构和门控特性的机械敏感通道 王云 转录组-形态学-功能整合分析揭示 TSPAN8 在初级感觉不同亚型轴突再生中双向调节 张旭 平行上升脊髓-橄榄通路用于感觉运动转化 李玉龙 通过构建多色基因编码的 GRAB 传感器监视体内神经调节 1:35-2:30 午餐休息 2:30-5:00 第五节转化医学与脑部疾病 主席:Bong-Kiun Kaang Tian-Ming Gao ATP 信号与抑郁症 Satoshi Kida cAMP 信号通路在 PTSD 中的作用 Min Zhuo ACC 和 AC1:过去、现在和未来 Yutian Wang 肽介导的蛋白质降解 - 研究工具和治疗应用 QI Wan 一种合成的 BBB 通透性三肽通过增加缺血性脑中的甘氨酸来提供神经保护 Ekaterina Pchitskaya 正常和正常脑组织中树突棘的 3D 形状和内质网功能分析
人类诱导的多能干细胞(IPSC)(Takahashi和Yamanaka,2006)及其分化为特定靶细胞(例如感觉神经元(ISN)(Chambers等,2009))已发展为有效的疾病模型和药物测试方法。 方法论程序的标准化对于将技术变异性降低到最小至少至关重要,并确保可靠性和可重复性(Lampert等,2020; Volpato和Webber,2020)。 迄今为止,有两个方案可用于区分IS,即基于小分子抑制(Chambers等,2012)和转录因子的过表达(Blanchard等,2015)。 应用小分子方案的应用还导致形态学差异很高的非ISN细胞产生,并且在区分之间计数很高(Schwartzentruber等,2018)。 这种细胞异质性挑战了正确的数据分配和解释。人类诱导的多能干细胞(IPSC)(Takahashi和Yamanaka,2006)及其分化为特定靶细胞(例如感觉神经元(ISN)(Chambers等,2009))已发展为有效的疾病模型和药物测试方法。方法论程序的标准化对于将技术变异性降低到最小至少至关重要,并确保可靠性和可重复性(Lampert等,2020; Volpato和Webber,2020)。迄今为止,有两个方案可用于区分IS,即基于小分子抑制(Chambers等,2012)和转录因子的过表达(Blanchard等,2015)。应用小分子方案的应用还导致形态学差异很高的非ISN细胞产生,并且在区分之间计数很高(Schwartzentruber等,2018)。这种细胞异质性挑战了正确的数据分配和解释。
同样,三重态𝑓1,𝑓2和∑𝑓 =𝑓=𝑓1 +𝑓2,三重态𝑓1,∆𝑓和∑𝑓以及三重态𝑓2,∆𝑓和∑𝑓的瞬时阶段也必须显示三路相依赖性。一起,四个频率包含一个频率混合四频。我们重复了离体实验,但现在我们记录了没有电刺激的跨膜电势,然后评估了所有可能的频率混合四分之一的联合相互作用(即根:𝑓1,𝑓2; products:25
背景:运动神经元疾病(MNDS)是以运动障碍和非运动症状为特征的进行性神经退行性疾病。丘脑在MND中的参与,尤其是在肌萎缩性侧索硬化症(ALS)等条件下,以及其与额颞痴呆(FTD)的相互作用增强了研究的兴趣。这项系统评价分析了磁共振成像(MRI)研究,该研究的重点是MND的丘脑变化,以了解这些变化的重要性及其与临床结果的相关性。方法:遵循PRISMA 2020指南,从成立到2023年6月,搜索了PubMed和Scopus数据库,以了解与MND患者丘脑中MRI发现有关的研究。合格的研究包括诊断为接受ALS或其他形式的MND的成年患者,这些患者接受了大脑MRI,其结果与丘脑的改变有关。使用纽卡斯尔 - 奥塔瓦量表对偏见的风险进行了评估。结果:共有52项研究(包括3009名MND患者和2181个健康对照)使用了各种MRI技术,包括体积分析,扩散张量成像和功能性MRI,以测量丘脑量,连接性,连接性和其他变化。这篇综述证实了MND的重大变化,例如萎缩和微结构降解,这与疾病的严重程度,进展和功能障碍有关。丘脑的参与因不同的MND亚型而异,并且受认知障碍和突变(包括9号染色体开放式阅读框架72(C9orf72))中的认知障碍和突变的影响。跨研究的发现的综合表明,丘脑病理是MND的普遍生物标志物,有助于运动和认知缺陷。丘脑是监测的有希望的目标,因为其功能障碍是MND中各种临床症状的基础。结论:丘脑改变为MND的病理生理学和进展提供了宝贵的见解。多模式MRI技术是检测动态丘脑变化的有效工具,表明结构完整性,连通性破坏和代谢活性。
运动神经元疾病(MND,ALS)是一种神经退行性疾病,其中控制自愿运动的神经细胞逐渐消失。结果是散布和恶化的弱点,导致完全麻痹,其中50%的人在两年内死亡,因为呼吸肌肉受到影响。mnd每300人中有1人杀死1人,使其与英国多发性硬化症一样普遍,但高死亡率意味着它看起来很少。无法治愈,英国目前唯一可用的治疗方法是Riluzole,它几乎无法察觉地减慢了这种疾病。我们对导致MND的原因的理解正在迅速改善,因此,在临床试验中需要进行许多新的潜在治疗方法。要被接受为许可新疗法的有效证据,临床试验需要给某些人安慰剂,而不是活跃的药物。在不可避免地致命的疾病中,使用安慰剂会导致道德问题,并且该领域的反应是缩短试验并将更多的人随机使更多的人与安慰剂组相比。这些变化使检测治疗效果变得更加困难,并且需要其他方法。一种选择是建模MND,以生成具有与实际试验参与者相同特征的虚拟人群。这种建模将允许更准确地预测不同临床试验的影响