”鉴于越来越多的证据表明乳酸在生理和病理条件下提供了各种细胞类型的信号调节功能,我们假设乳酸通过改变全面的基因表达来影响神经元功能,” Toohoku Nagatomi教授从Toohoku University的Ryoichi Nagatomi教授和研究团队研究生院以及研究团队研究生院与PH。来自东京医学和牙科大学的学生Yidan Xu和Joji Kusuyama副教授。
引言:本研究探讨了ZDHHC16在脑卒中(CA)模型中的作用及其可能的机制。材料和方法:从我院收集CA患者。使用小鼠建立大脑中动脉闭塞(MCAO)模型。结果:CA患者的ZDHHC16水平上调。ZDHHC16上调在体外模型中促进炎症并加速线粒体损伤。ZDHHC16基因上调促进神经细胞铁死亡。抑制ZDHHC16可预防小鼠脑卒中。ZDHHC16上调通过促进CREB泛素化与CREB相互连接来抑制CREB。CREB激动剂抑制了体外模型中ZDHHC16上调的影响。 CREB 抑制剂在体外模型中抑制了 ZDHHC16 下调的影响。结论:我们得出结论,ZDHHC16 通过抑制 CREB 促进 CA 模型中的铁死亡和炎症。该发现可能对 CA 或其他神经系统疾病的治疗有益。
科学与创新部,格兰特。 Ramon和Cajal RYC2019-0 Mike Lane奖学金免费拥有Gracia别墅,赠款/奖励号:CVG2 AFM-TEMELON TRAMPOLINE,赠款/奖励号:23648; EURONONOME委员会第三届加泰罗尼亚政府,赠款 /奖励号:2021 SGR机构或加泰罗尼亚研究与高级研究,赠款 /奖励编号:Engel2022;格兰特,格兰特。 IDIBELL_NEWSCIENCE计划-Neuropulse 2022;赠款/奖励:赠款/奖项:ID,ID,
摘要:唐氏综合症(DS)是最常见的染色体21(HSA21)非整倍性的染色体障碍,其特征是智力障碍和寿命降低。转录阻遏物,阻遏物元件1沉默转录因子(静止)是表观遗传调节剂,是神经元和神经胶质基因表达的关键调节剂。在这项研究中,我们鉴定并研究了靶标基因在人脑组织,大脑器官和神经细胞中的作用。基因表达数据集由人类脑组织,脑组织,NPC,神经元和星形胶质细胞的健康对照和DS样品产生,从基因本体论(GEO)和序列读取存档(SRA)数据库中获取。在所有数据集上进行差异表达分析,以在DS和对照组之间产生差异表达基因(DEG)。靶向的DEG进行了功能本体,途径和网络分析。我们发现,跨多个不同大脑区域,年龄和神经细胞类型的JAK-Stat和HIF-1信号通路富含DS中的REST靶向DEG。我们还鉴定了涉及神经系统发育,细胞分化,脂肪酸代谢和DS脑中炎症的重新定位的DEG。基于发现,我们建议将休息作为关键调节剂,并且是一个有前途的治疗靶标,以调节DS脑中的稳态基因表达。
神经干细胞增殖与神经元分化之间的平衡对于适当发展神经系统至关重要。Sonic刺猬(SHH)依次促进细胞增殖和神经表型的规范,但是负责从有丝分裂到神经源的发育转变的信号传导机制尚不清楚。在这里,我们表明,SHH通过瞬态受体电势阳离子阳离子c构件C成员3(TRPC3)(TRPC3)通过Ca 2+涌入来增强Ca 2+的活性,并通过Ca 2+涌入发育于Ca 2+涌入,并以发育阶段相互依赖的阶段相关的方式从细胞内存储中释放。这种睫状Ca 2+的活性反过来又通过下调SOX2表达和神经源性基因的上调表达来拮抗神经干细胞中的规范,增生性SHH信号,从而实现了神经元分化。这些发现表明,神经细胞睫状信号传导中的SHH-CA 2+依赖性开关触发了SHH作用从规范有限源性到神经源的开关。在该神经源信号轴上鉴定的分子机制是治疗脑肿瘤和神经发育障碍的潜在靶标。
1霍普金斯海军陆战队,干细胞生物学和再生医学研究所,斯坦福大学,帕特里·格罗夫,CA 93950,美国2美国2干细胞生物学和再生医学研究所,斯坦福大学医学院,斯坦福大学,加利福尼亚州斯坦福大学,加利福尼亚州94305,美国34305 Biologia, Universit à degli Studi di Padova, 35131 Padova, Italy 5 “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy 6 Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy 7 San Camillo Hospital srl, IRCCS,30126委内兹,意大利委内西亚8 Chan Zuckerberg Biohub,旧金山,加利福尼亚州94158,美国9美国94158病理学系,斯坦福大学医学院,美国加利福尼亚州斯坦福大学,美国加利福尼亚州94305); lucia.manni@unipd.it(l.m.)
摘要:胶质细胞对于在发育,衰老和疾病期间的大脑功能至关重要。然而,星形胶质体在大脑发育过程中发挥作用与成人病变大脑中所起的作用完全不同。因此,对衰老的大脑和脑血管疾病中星形胶质细胞活性下的病理机制的更深入了解对于指导新的治疗策略的发展至关重要。为此,本综述提供了在发育,衰老和神经退行性疾病(包括脑缺血)过程中星形胶质细胞的转录组活性之间的比较。在胎儿脑发育期间,星形胶质细胞和小胶质细胞通常会影响相同的发育过程,例如神经/神经胶质发生,血管生成,轴突生长,突触发生和突触修剪。在成人大脑中,通过介导突触消除,而小胶质细胞活性与突触可塑性的变化相关,并通过不断感测环境来消除细胞碎片,而成人大脑星形胶质细胞是突触重塑的关键参与者。然而,在病变的大脑星形胶质细胞中,对神经元的能量供应,神经传递和堆积的保护性疤痕隔离病变部位,从周围环境中散发出了重要的功能。炎症,神经变性或脑稳态的丧失会诱导小胶质细胞基因表达,形态和功能的变化,通常称为“启动”小胶质细胞。基因表达的这些变化的特征是吞噬体,溶酶体和抗原表现信号传导途径的富集,并与编码细胞表面受体的基因上调有关。此外,底漆的小胶质细胞的特征是基因网络响应干扰素伽玛的上调。结论。在大脑发育,衰老和神经退行性疾病期间,星形胶质细胞转录组活性的比较可能会为我们提供新的治疗策略,以保护大脑衰老并改善临床结果。关键词:星形胶质细胞,小胶质细胞,大脑,发育,转录组学,神经变性,当前几乎无法获得衰老大脑和脑血管疾病的神经保护疗法。胶质细胞对于
摘要:与神经发育障碍 (NDD) 和特征相关的 DNA 序列变异(单核苷酸多态性或变异,SNP/SNV;拷贝数变异,CNV)通常映射到假定的转录调控元件上,特别是增强子。然而,这些增强子控制的基因仍然定义不清。传统上,给定增强子的活性及其与序列变异相关的可能改变的影响被认为会影响最近的基因启动子。然而,在神经细胞染色质中获得全基因组长距离相互作用图挑战了这种观点,表明给定的增强子通常不与最近的启动子相连,而是与更远的启动子相连,跳过中间的基因。在本篇观点中,我们回顾了一些最近的论文,这些论文生成了长距离相互作用图谱(通过 HiC、RNApolII ChIA-PET、Capture-HiC 或 PLACseq),并将已识别的长距离相互作用 DNA 片段与与 NDD(如精神分裂症、躁郁症和自闭症)和特征(智力)相关的 DNA 序列变体重叠。这种策略允许将承载 NDD 相关序列变体的增强子的功能归因于位于线性染色体图谱远处的连接基因启动子。其中一些增强子连接基因确实已被鉴定为导致疾病,通过鉴定基因蛋白质编码区(外显子)内的突变,验证了该方法。然而,重要的是,连接基因还包括许多以前未在其外显子中发现突变的基因,指向 NDD 和特征的新候选贡献者。因此,长距离相互作用图谱与检测到的与 NDD 相关的 DNA 变异相结合,可用作识别新的候选疾病相关基因的“指针”。基于 CRISPR-Cas9 的方法对涉及增强子和启动子的长距离相互作用网络进行功能操控,开始探索已识别相互作用的功能意义以及所涉及的增强子和基因,从而提高我们对神经发育及其病理学的理解。
标题:皮层内微刺激脉冲波形和频率招募皮层神经元和神经纤维网激活的不同时空模式。作者:Kevin C. Stieger 1,2、James R. Eles 1、Kip A. Ludwig 3-5、Takashi DY Kozai 1,2,6-8 附属机构:1. 匹兹堡大学生物工程系,宾夕法尼亚州匹兹堡 2. 匹兹堡大学认知神经基础中心,卡内基梅隆大学,宾夕法尼亚州匹兹堡 3. 威斯康星大学麦迪逊分校生物医学工程系,威斯康星州麦迪逊 4. 威斯康星大学麦迪逊分校神经外科系,威斯康星州麦迪逊 5. 威斯康星转化神经工程研究所 (WITNe),美国威斯康星州麦迪逊 6. 匹兹堡大学神经科学中心,宾夕法尼亚州匹兹堡 7. 匹兹堡大学麦高恩再生医学研究所,宾夕法尼亚州匹兹堡 8. 匹兹堡大学脑神经技术中心宾夕法尼亚州匹兹堡研究所
本文档是已发表作品的已接受手稿版本,该作品最终以 ACS Applied Materials & Interfaces 的形式发表,版权归 © American Chemical Society 所有,由出版商经过同行评审和技术编辑。要访问最终编辑和出版的作品,请访问 https://doi.org/10.1021/acsami.1c16543。