认知功能障碍认知功能障碍和注意力下降通常伴随脑肿瘤出现,并可能干扰康复计划。额叶或颞叶的脑肿瘤会导致注意力下降、执行能力下降和/或信息处理速度减慢。这些症状可能会因化疗和放疗而加剧或更加明显 [4]。化疗后的认知变化主要与高水平细胞因子、DNA 损伤和脑白质神经毒性损伤有关。疲劳、抑郁和心身影响也可能是认知功能障碍的次要原因 [13]。据报道,放射治疗后存活 6 个月以上的脑肿瘤患者中 50% 至 90% 会出现放射引起的认知功能障碍 [14]。放射性脑病可发生在急性期或晚期,与神经细胞本身或血管内皮细胞的损伤有关 [14]。
当血液供应被阻塞到血管盆地时,就会发生缺血性中风,导致神经细胞死亡并形成缺血性核心。随后,大脑进入重建和修复的阶段。整个过程包括细胞脑损伤,炎症反应,血脑屏障破坏和神经修复。在此过程中,神经元,免疫细胞,神经胶质细胞,内皮细胞和其他细胞的比例和功能发生了变化。鉴定细胞类型之间基因表达的潜在差异或相同类型细胞之间的异质性有助于了解大脑中发生的细胞变化和疾病的背景。最近的单细胞测序技术的出现促进了对单细胞多样性的探索以及缺血性中风的分子机制的阐明,从而为缺血性中风提供了新的思想和方向。
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们在作为听觉研究的既定动物模型的物种中采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗,X射线相位对比断层扫描,光片荧光显微镜
1 型神经纤维瘤病 (NF1) 是一种遗传性疾病,其特征是神经嵴细胞中良性和恶性肿瘤的生长。尽管进行了广泛的研究,但只有一种药物被批准用于治疗丛状神经纤维瘤,而且没有针对其他相关肿瘤的特定药物。最近的研究表明,针对细胞信号通路(Hippo、Janus 激酶/信号转导和转录激活因子以及丝裂原活化蛋白激酶)和微环境(神经细胞、巨噬细胞、肥大细胞和 T 细胞)是潜在的治疗方法。几项临床试验正在研究抑制特定激酶或靶向微环境中信号分子的药物。尽管取得了重大进展,但仍需要更有效的治疗方法。本文回顾了与 NF1 及其相关肿瘤相关的先前策略、正在进行的临床试验和基础研究的最新进展。从科学数据库和文献中收集的数据突出了新疗法的潜力,包括激酶抑制剂、
meCP2是成熟神经细胞中丰富的蛋白质,它与含甲基化胞嘧啶的DNA序列结合。MECP2基因中的突变引起严重的神经疾病RETT综合征(RTT),引发对基本分子机械性的深入研究。已经提出了多个功能,其中之一涉及剪接中的调节作用。在这里,我们利用高质量转录组数据集的最新可用性来定量探测MECP2对替代剪接的潜在影响。使用可以同时捕获线性和非线性关联的各种机器学习方法,我们表明MECP2级别差异很大,对三种不同系统中的替代剪接具有最小的影响。替代剪接显然也不对DNA甲基化水平的心理变化无动于衷。我们的结果表明,剪接的调节不是MECP2的主要功能。他们还强调了多变量定量分析在制定生物学假设中的重要性。
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合,用于已建立的听觉研究动物模型。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需进行特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗、X 射线相位对比断层扫描、光片荧光显微镜
生物电子设备可以提供强大的工具,以充分地与电动性神经细胞和组织进行有效的沟通,从而使我们能够更好地了解复杂的生物学功能并治疗患有神经系统疾病的患者。[1]用于神经应用的生物电子设备的细胞或组织界面可以从使用与组织的机械和生化特性相匹配的合成水凝胶中受益。模仿细胞外基质的水凝胶也被广泛用作器官芯片设备中的细胞支持支架,[2] 3D细胞培养,[3]和用于3D生物印刷的生物互联。[4]使用含有细胞水凝胶的生物学的3D Bioprinting通过以3D空间分辨率排列细胞和材料来构建更复杂和功能性的组织和疾病模型,从而在神经组织工程中提供了para-digm的变化。[4,5]
除颤是一种生物医学仪器,用于治疗患有心律不齐的人的心脏病患者。心律失常或不规则的心跳被称为心律问题,该疾病称为心律不齐。不规则的心跳问题是当协调心脏节拍的电信号无法正常工作时发生。错误的信号传导导致心脏跳动太快(心动过速),太慢(心动过缓)或不规则。除颤器会输送一定剂量的电流,称为反击心脏。通过对心脏肌肉进行反震,去极化活性的过程将应用于肌肉。在生理学中,导致肌肉或神经细胞进行去极化,以通过排放电容器来建立或施加电流可以使整个心脏去极化,并将其作为心脏除颤器进行测试。但是,此处设计的系统旨在提前检测一周的心脏,并使用此除颤器相应治疗。
阿尔茨海默氏病(AD)是一种多因素神经退行性疾病,会引起异常行为,认知能力受损,例如学习,记忆,感知和解决问题。1,2该疾病的病理生理非常融合,并提出了两个假设,例如“胆碱能”和“淀粉样蛋白”。根据淀粉样假说,AD的标志包括导致神经细胞死亡的淀粉样蛋白β凝集。3根据第二个假设,胆碱能假设,乙酰胆碱(ACH)在AD中未能产生,因为神经递质的产生较少,该神经递质的产生较少,该神经递质在睡眠,学习,注意力,注意力和灵敏度中起着重要作用。4 AD是由胆碱酯酶(乙酰胆碱酯酶:ACHE和丁酰胆碱酯酶:BCHE)和单胺氧化酶(MAO-A和MAO-B)异常表达引起的。5,6抑制酶可以升高5,6抑制酶可以升高
传统的 X 光无法显示颅骨后面生长的肿瘤,因此需要使用特殊扫描来寻找肿瘤。计算机断层扫描 (CT) 或磁共振成像 (MRI) 扫描均使用计算机图形来创建大脑图像。对于这两种扫描,患者都躺在滑入成像设备的桌子上。为了获得准确的图像,患者必须静静地躺着。如果患者无法静静地躺着,则可能需要镇静。通常会注射特殊造影剂来帮助增强图像。扫描可能非常嘈杂,并且时间长度不一。CT 和 MRI 只是可用的两种扫描类型。其他专门的扫描可以测量流向大脑的血流率、提供用于手术期间的大脑映射或测量神经细胞产生的磁场。扫描完成后,放射科医生将解释计算机图像并提供初步诊断。