摘要:至关重要的是要问,代理如何仅使用通过习惯性感觉运动经验获得的部分世界模型来生成行动计划,从而实现目标。尽管许多现有的机器人研究都使用了前向模型框架,但存在高自由度的泛化问题。当前的研究表明,采用生成模型的预测编码 (PC) 和主动推理 (AIF) 框架可以通过学习低维潜在状态空间中的先验分布来开发更好的泛化,该先验分布表示从习惯性感觉运动轨迹中提取的概率结构。在我们提出的模型中,学习是通过推断最佳潜在变量以及突触权重来最大化证据下限来进行的,而目标导向规划是通过推断潜在变量来最大化估计下限来完成的。我们提出的模型在模拟中使用简单和复杂的机器人任务进行了评估,通过为正则化系数设置中间值,证明了在有限的训练数据下学习中具有足够的泛化能力。此外,比较模拟结果表明,由于先验学习将运动计划的搜索限制在习惯轨迹范围内,因此所提出的模型在目标导向规划中优于传统的前向模型。
微分同胚可变形图像配准在许多医学图像研究中至关重要,因为它提供了独特的属性,包括拓扑保存和变换的可逆性。最近基于深度学习的可变形图像配准方法利用卷积神经网络(CNN)从合成基本事实或相似性度量中学习空间变换,从而实现快速图像配准。然而,这些方法往往忽略了变换的拓扑保存和变换的平滑性,而平滑性仅由全局平滑能量函数来强制执行。此外,基于深度学习的方法通常直接估计位移场,这不能保证逆变换的存在。在本文中,我们提出了一种新颖的、有效的无监督对称图像配准方法,该方法最大化微分同胚图空间内图像之间的相似性,并同时估计正向和逆变换。我们使用大规模脑图像数据集在 3D 图像配准上评估了我们的方法。我们的方法实现了最先进的配准精度和运行时间,同时保持了理想的微分同胚特性。
如何开发精简而准确的深度神经网络对于实际应用至关重要,尤其是对于嵌入式系统中的应用。尽管之前沿着该研究方向的工作已经显示出一些有希望的结果,但是大多数现有方法要么无法显著压缩训练有素的深度网络,要么需要对修剪后的深度网络进行大量再训练才能重新提高其预测性能。在本文中,我们提出了一种新的深度神经网络分层修剪方法。在我们提出的方法中,每个单独层的参数都基于相应参数的分层误差函数的二阶导数独立地进行修剪。我们证明,修剪后最终的预测性能下降受每层造成的重构误差的线性组合限制。通过适当控制分层误差,只需对修剪后的网络进行轻度再训练即可恢复其原始的预测性能。我们在基准数据集上进行了大量实验,以证明我们的修剪方法与几种最先进的基线方法相比的有效性。我们的工作代码发布在:https://github.com/csyhhu/L-OBS 。
要获得癫痫发作的自由,癫痫手术需要完全切除癫痫脑组织。在术中电视学(ECOG)记录中,癫痫组织产生的高频振荡(HFO)可用于量身定制切除缘。但是,实时自动检测HFO仍然是一个开放的挑战。在这里,我们提出了一个尖峰神经网络(SNN),用于自动HFO检测,最适合神经形态硬件实现。我们使用独立标记的数据集(58分钟,16个记录),训练了SNN,以检测从术中ECOG测量的HFO信号。我们针对快速连锁频率范围(250-500 Hz)中HFO的检测,并将网络结果与标记的HFO数据进行了比较。我们赋予了SNN新型的伪影排斥机制,以抑制尖锐的瞬变并证明其在ECOG数据集中的有效性。该SNN检测到的HFO速率(中位数为6.6 HFO/ min)与数据集中发布的HFO率(Spearman'sρ= 0.81)相当。所有8例患者的术后癫痫发作结果被“预测”为100%(CI [63 100%])的精度。这些结果为建造实时便携式电池式HFO检测系统提供了进一步的一步,该检测系统可在癫痫手术期间使用,以指导癫痫发作区的切除。
摘要 — 目标:构建一个可以在单个受试者的小型 EEG 训练集上进行训练的 DL 模型提出了一个有趣的挑战,这项工作正试图解决这一挑战。具体来说,本研究试图避免长时间的 EEG 数据收集过程,并且不组合多个受试者的训练数据集,因为这会对分类性能产生不利影响,因为受试者之间的个体间差异很大。方法:使用大约 120 次 EEG 试验对定制的具有混合增强功能的卷积神经网络进行训练,每个模型仅针对一个受试者。结果:经过修改的具有混合增强功能的 ResNet18 和 DenseNet121 模型分别实现了 0.920(95% 置信区间:0.908,0.933)和 0.933(95% 置信区间:0.922,0.945)的分类准确率。结论:我们表明,尽管本研究使用的训练数据集有限,但与同一数据集上先前研究中的其他 DL 分类器相比,设计的分类器具有更高的分类性能。
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
卷积神经网络(CNN)在培训数据集代表预期在测试时遇到的变化时,可以很好地解决监督学习问题。在医学图像细分中,当培训和测试图像之间的获取细节(例如扫描仪模型或协议)之间存在不匹配和测试图像之间的不匹配时,就会违反此前提。在这种情况下,CNNS的显着性能降解在文献中有很好的记录。为了解决此问题,我们将分割CNN设计为两个子网络的串联:一个相对较浅的图像差异CNN,然后是将归一化图像分离的深CNN。我们使用培训数据集训练这两个子网络,这些数据集由特定扫描仪和协议设置的带注释的图像组成。现在,在测试时,我们适应了每个测试图像的图像归一化子网络,并在预测的分割标签上具有隐式先验。我们采用了经过独立训练的Denoising自动编码器(DAE),以对合理的解剖分段标签进行模型。我们验证了三个解剖学的多中心磁共振成像数据集的拟议思想:大脑,心脏和前列腺。拟议的测试时间适应不断提供绩效的改进,证明了方法的前景和普遍性。对深CNN的体系结构不可知,第二个子网络可以使用任何分割网络使用,以提高成像扫描仪和协议的变化的鲁棒性。我们的代码可在以下网址提供:https://github.com/neerakara/test- time- aptaptable-neural-near-netural-netural-networks- for- domain-概括。
1 机器人、人工智能与实时系统,慕尼黑工业大学信息学院,德国慕尼黑,2 于利希超级计算中心 (JSC) 神经科学模拟与数据实验室,高级模拟研究所,JARA,于利希研究中心有限公司,德国于利希,3 瑞士国家超级计算中心 (CSCS),苏黎世联邦理工学院,瑞士卢加诺,4 神经计算单元,冲绳科学技术研究生院,日本冲绳,5 机器人与人工智能卓越系,生物机器人研究所,Scuola Superiore Sant'Anna,意大利蓬泰代拉,6 计算机架构与技术系,格拉纳达大学信息与通信技术研究中心,西班牙格拉纳达,7 图像处理研究团队,日本理化学研究所先进光子学中心,和光,8 计算工程应用单元,信息系统与网络安全总部,理化学研究所,日本和光市、9 日本东京电气通信大学信息与工程研究生院、10 德国于利希研究中心、神经科学与医学研究所 (INM-6)、高级模拟研究所 (IAS-6)、JARA BRAIN 研究所 I、11 德国亚琛工业大学计算机科学 3-软件工程、12 日本神户理化学研究所计算科学中心
活神经网络通过生长和自组织过程出现,从单个细胞开始,最终形成大脑,一个有组织、有功能的计算设备。然而,人工神经网络依靠人类设计的手工编程架构来实现其卓越的性能。我们能否开发出无需人工干预就能生长和自组织的人工计算设备?在本文中,我们提出了一种受生物启发的开发算法,该算法可以从单个初始细胞“生长”出一个功能齐全的分层神经网络。该算法组织层间连接以构建视网膜主题池化层。我们的方法受到早期视觉系统所采用的机制的启发,在动物睁开眼睛前几天,该系统将视网膜连接到外侧膝状体 (LGN)。稳健自组织的关键因素是第一层中出现的自发时空活动波和第二层中“学习”第一层中底层活动模式的局部学习规则。该算法可适应各种输入层几何形状,对第一层中的故障单元具有鲁棒性,因此可用于成功增长和自组织不同池大小和形状的池架构。该算法提供了一种通过增长和自组织构建分层神经网络的原始程序。我们还证明了从单个单元增长的网络在 MNIST 上的表现与手工制作的网络一样好。从广义上讲,我们的工作表明,受生物启发的开发算法可以应用于在计算机中自主生长功能性“大脑”。
