感觉神经元感知致病性浸润,以告知宿主38防御的免疫协调。然而,感官神经元免疫相互作用主要显示为39驱动先天免疫反应。体内记忆,无论是保护性还是破坏性,在生命的早期就获得了40次获得,如早期暴露于链球菌和过敏性疾病发作所证明的那样。41我们的研究进一步定义了感觉神经元对肺部体液免疫的影响。42使用肺炎链球菌的鼠模型前暴露和感染,以及43种过敏性哮喘的模型,我们表明B细胞和血浆细胞44募集和抗体产生需要感觉神经元。对肺炎链球菌的响应,感觉神经元耗竭45导致细菌负担更大,B细胞群体减少,IgG释放和中性粒细胞46刺激。相反,在过敏原诱导的气道炎症过程中,感觉神经元耗竭降低了B细胞群体,IgE和47个哮喘特征。在每个模型中释放的感觉神经元48神经肽都不同。有细菌感染,优先释放了血管活性肠49多肽(VIP),而物质P则释放出对哮喘的反应50。将VIP施用到感官神经元缺失的小鼠中抑制了细菌51负担并增加了IgG水平,而VIP1R缺乏症增加了对细菌52感染的敏感性。用物质P处理的感官神经元缺乏的小鼠增加了IgE和哮喘,而物质P遗传消融导致IgE钝化,类似于感觉神经元缺乏的54次哮喘小鼠。58这些数据表明,免疫原差异刺激感觉55神经元释放特定的神经肽,这些神经肽是特异性靶向B细胞的。靶向感官56神经元可能会为57和/或加重的体液免疫提供的疾病提供替代治疗途径。
细胞内淀粉样β低聚物(AβOS)与阿尔茨海默氏病(AD)发病机理和这种神经退行性疾病中的神经元损伤有关。钙调蛋白与AβO具有非常高的亲和力结合,在Aβ诱导的神经毒性中起关键作用,并已用作AβO-抗抗酸肽设计的模型模板蛋白。Aβ的COOH末端结构域的疏水性氨基酸残基在与具有高亲和力的AβO的细胞内蛋白相互作用中起主要作用。本综述着重于与Aβ末端结合的Aβ-抗疏水性肽及其在大脑中的内源性产生的结合,强调了蛋白酶体作为这种类型肽的主要来源。强调,相对于年龄匹配的健康个体,这些疏水性内源性神经肽的水平在AD患者的大脑中发生了显着变化。可以得出结论,这些神经肽可能成为评估零星AD和/或AD预后风险的有用生物标志物。此外,与Aβ的COOH末端结合的Aβ-抗疏水性肽似乎是先验的新型AD疗法的良好候选者,可以与其他基于药物的疗法结合使用。未来在AD临床管理中使用的观点和局限性。
体感神经系统在屏障组织处监测外部刺激,调节先天51个免疫细胞在感染和炎症下。感觉神经元在控制52个自适应免疫系统中的作用,更具体地说,对微生物群的免疫力仍然难以捉摸。在这里,我们确定了一种新的机制,用于在皮肤中神经肽55降钙素基因相关肽(CGRP)介导的54个共生特异性T淋巴细胞和体感神经元之间直接神经免疫性通信。内部成像表明,56个共生特异性T细胞与体内皮肤神经纤维近距离接近。57相应地,我们观察到神经肽CGRP的受体上调,斜坡1,58在CD8 + T淋巴细胞中是由皮肤共生定植引起的。Neuromune CGRP-RAMP1 59信号轴在共生特异性T细胞中起作用,以约束17型反应,而60适应稳态下微生物群反应性淋巴细胞的激活状态。因此,共有特异性T细胞中神经免疫性CGRP-RAMP1信号传导的61个调节塑造了皮肤上皮的62个总体激活状态,从而影响了对63种损伤等63种侮辱的反应结果。体验神经元通过CGRP-RAMP1轴控制对64微生物群的适应性免疫的能力强调了调节的各个层和65个多系统配位,以在稳定的66个状态和病理学下,最佳微生物群T细胞功能最佳的微生物群T细胞功能。67
近年来,对偏头痛病理生理学的理解的进步导致了新型治疗靶标的发展(4)。这样一个靶标是降钙素基因相关肽(CGRP),这是一种与偏头痛发病机理有关的神经肽。Erenumab是阻断CGRP受体的完全人类单克隆抗体(MAB),是一种批准的预防偏头痛治疗方法(5)。临床试验以及现实世界的研究表明,Erenumab对偶发性和CM患者的安全性和功效(6-8)。据我们所知,尚未发表有关与Onabont-A和Erenumab的双重疗法的具体建议。但是,共识陈述建议在CM中12至24个月后,包括偏头痛预防药物的治疗暂停(包括Erenumab或Onabont-A)(9)。尽管这些治疗有效,但一些患者仍会继续遇到严重的残疾。
最近的研究强调了神经免疫相互作用在介导过敏性疾病中的新兴作用。过敏是由对异物抗原的过度活跃反应引起的。周围感官和自主神经系统密集地支配了粘膜屏障组织,包括皮肤,呼吸道和胃肠道(GI)的粘膜屏障组织,这些组织暴露于过敏原。越来越清楚的是,神经元在过敏性炎症中积极地与肥大细胞,树突状细胞,嗜酸性粒细胞,T H 2细胞和2型先天淋巴样细胞的功能进行了调节。已经发现了两个系统之间的几种跨对词的机制,具有潜在的解剖特异性。免疫细胞释放炎症介质,包括组胺,细胞因子或神经营养蛋白,它们直接激活感觉神经元以介导皮肤中的瘙痒,咳嗽/打喷嚏和呼吸道中的咳嗽和支气管收缩,以及在GI小区域中的运动。激活后,这些周围神经元释放神经递质和神经肽直接作用于免疫细胞来调节其功能。体感和内脏传入神经元释放包括降钙素基因相关肽,物质P和血管活性肠肽在内的神经肽,它们可以作用于2型免疫细胞以驱动过敏性炎症。自主神经元释放包括乙酰胆碱和去甲肾上腺素在内的神经递质,它们都向先天和适应性免疫细胞发出信号。神经免疫信号传导可能在过敏性疾病的生理病理学中起核心作用,包括特应性皮炎,哮喘和食物过敏。因此,对这些细胞和分子神经免疫相互作用有了更好的了解,可能会导致治疗过敏性疾病的新型治疗方法。
暴饮暴食和能量消耗不平衡是导致超重和肥胖的主要因素。从理论上讲,减少食物摄入和增加能量消耗是治疗肥胖最简单的方法。然而,对于肥胖者来说,控制食物摄入以减轻体重往往很难实现和维持。目前,开发抑制食欲或减少食物摄入(肥胖的直接和主要原因)的减肥药物或干预措施仍然具有挑战性。2021年,索马鲁肽作为一种新的有效减肥药被批准,它通过强烈减少食欲和抑制食物摄入发挥其减肥作用(Wilding 等人,2021;Shu 等人,2022)。尽管它具有很强的疗效,但对其机制的不完全了解,以及对安全性和高成本的担忧,可能会限制其广泛使用。因此,开发新的食欲抑制药物和干预措施仍然是必要的。人体通过肠道(外周控制)和大脑(中枢控制)之间的通讯,以高度复杂的方式调节食物摄入和食欲 ( Hussain et al., 2014 )。外周信号通过两种主要途径将信息从肠道传递到大脑:血液和迷走神经。营养物质和激素等外周信号通过血液传播,到达大脑后,作用于下丘脑,特别是弓状核 (ARC),因为该处的血脑屏障不完整 ( Hussain et al., 2014 )。下丘脑 ARC 包含两组不同的神经元:表达刺豚鼠相关肽 (AgRP) 的神经元和表达促阿片黑素皮质素 (POMC) 的神经元。这些神经元通过释放各种神经肽(例如 AgRP、神经肽 Y (NPY)、α-黑素细胞刺激激素 (α-MSH))和神经递质(例如 γ-氨基丁酸 (GABA) 和谷氨酸 (Glu))到 ARC 内部和外部的附近和下游神经元,以协调的方式调节食欲和食物摄入量(Wu and Palmiter,2011;Vong et al., 2011;Lowell, 2019),在整合外周和中枢信号方面发挥着至关重要的作用。相反,携带肠道信息的外周信号通过迷走神经传输到脑干。然后,脑干将这些外周输入投射到下丘脑和其他大脑区域,以调节食欲和食物摄入量。下丘脑还会以双向方式将信息发送回脑干,脑干又会通过迷走神经将信息传回肠道,以控制胃排空、胃动力和胰腺分泌等。为了开发减肥药物或干预措施,针对或操纵这些神经肽或神经递质的信号(通过增强或抑制它们)可以成为控制食物摄入的有效策略。研究表明,中枢 GABA 能信号在调节食物摄入和能量稳态方面发挥着复杂的作用。根据大脑区域和神经元类型的不同,GABA 可以抑制或促进食物摄入和能量消耗。例如,下丘脑 AgRP 神经元投射到背内侧下丘脑核、下丘脑室旁核和副臂核的 GABA 信号促进进食(Han 等人,2023 年;Lowell,2019 年;Wu 等人,2009 年)。研究表明,下丘脑 AgRP 神经元中 GABA 合成和血管转运蛋白的缺失会减少食物摄入并增加能量消耗
神经系统是肿瘤微环境的重要组成部分,驱动肿瘤发生和肿瘤进展。肿瘤微环境中的神经元提示(例如,神经递质和神经肽)会导致免疫细胞的表型变化,例如增加衰竭和抑制效应细胞,从而促进免疫逃避和癌症的进展。在本评论中讨论了两种通过肿瘤相关神经的免疫调节:通过神经元刺激(即通过神经传递)调节和检查点介导的神经元免疫调节。后者通过在肿瘤内神经和神经胶质细胞的膜上的免疫检查点的表达发生。在这里,我们总结了有关肿瘤环境中神经免疫回路的新发现,同时强调了新的和负担得起的抗癌治疗方法的潜在靶标。
人类肠道微生物组在神经,免疫和内分泌系统的成熟中起着重要作用。来自动物模型的研究数据表明,肠道菌群在包括迷走神经在内的精心信号通路网络中与宿主的大脑进行通信。微生物组的影响力扩展到其宿主的行为和社会发展。作为一种社会物种,人类与他人交流的能力对于其生存和生活质量至关重要。当前的研究探讨了肠道微生物群的发育影响以及如何利用这些肠道途径来减轻与各种神经发育和精神疾病相关的社会症状。动物模型中的一种有趣的研究素食以益生菌治疗为中心,这导致下游增加内源性催产素的循环,这是一种与社交性相关的神经肽激素。进一步的研究可能会导致人类的治疗应用,尤其是在其生命的早期阶段。
评估了临床前研究和临床研究的方法,以突出尚待回答的知识差距,以及将这些策略正确转化为临床环境所需的必要步骤。导致心脏自主神经失衡,其特征是慢性交感神经和副交感神经戒断,降低心脏电生理学并促进心室心律失常。因此,针对交感神经不平衡的神经调节干预措施已成为有希望的抗心律失常策略。这些策略针对心脏神经的不同部分,直接或间接恢复心脏自主语调。这些干预措施包括对交感神经递质和神经肽,心脏交感神经神经神经,胸腔硬膜外麻醉以及脊髓和迷走神经刺激的药理阻滞。一再证明神经调节策略是非常有效且非常有前途的抗心律失常疗法。然而,我们对神经心理生理学的理解仍然有很大的余地,完善了当前的神经调节战略选择,并阐明了许多这些战略选择的慢性影响。
可能是一种不同于 NT2 和特发性嗜睡症的病理实体。6 神经肽下丘脑分泌素(也称为食欲素)在维持觉醒和抑制快速眼动睡眠中发挥作用。2 因此,下丘脑分泌素产生神经元的丧失导致睡眠连续性的丧失,打破睡眠和觉醒之间的界限。发作性睡病可能继发于其他疾病(例如帕金森病、尼曼-匹克 C 型以及涉及下丘脑外侧区域的各种血管、肿瘤或炎症病变)。4 许多研究推测发作性睡病可能是一种自身免疫性疾病,导致表达下丘脑分泌素的下丘脑神经元丧失。2,7–9 值得注意的是,几乎所有 NT-1 患者都具有 HLA DQB1*0602 变体,该变体可调节病毒和细菌感染中的 T 细胞免疫。10