Cern Beam物理学:Matthew Fraser,Eliott Johnson,Nikolaos Charitonidis,Rebecca Taylor Beam操作:Marc Delrieux,Linac3和Leir Teams Beam仪器:Federico Roncarolo,Inaki Ortega Ruiz,Jocelyn Tan,Jocelyn tan,Jocelly brreth,Aboub eboub eboun damhmun NOLI CHAM和IRRAD:Salvatore Danzeca,Federico Ravotti辐射保护:Robert Froeschl,Angelo Infantino Fluka:Francesco Cerutti,Luigi Esposito知识转移:Enrico Chesta R2E:Ruben Garcia Alia,Matteo Brucoli,Rudy ferrea and gire and giuse and n n and Alia Emriskova,Mario Sacristan,Daniel Prelipcean集团和部门管理:Brennan Goddard,Simone Gilardoni,Markus Brugger
关于钠离子环境报告的信息很少(Liu 等人,2021 年;Peters 等人,2021 年)。因此,本研究的目的是评估钠离子存储技术的环境方面。因此,通过本研究对特定的钠离子电池进行生命周期评估 (LCA)。该论文的具体范围是从摇篮到大门的角度研究 1 kWh 生产的电池储能。结果将通过价值链中排放的分解来呈现,包括材料、运输和能源影响。同时还展示了电池材料影响的划分。对于评估的电池,假设它用于千兆级生产(每年生产 1 GWh 的电池存储)。假设这将被放置在欧洲,并呈现全球和本地供应链。
摘要我们描述了表面电极离子陷阱连接的设计,这是大尺度离子陷阱阵列的关键元素。使用双目标优化方法设计电极,该方法保持了总伪电量曲率,同时最小化沿离子传输路径的轴向伪电势梯度。为了促进在多个陷阱区域中的平行操作的激光束输送,我们在此X结陷阱的每个臂上实现了集成的光学器件。提出了商业铸造制造的陷阱芯片的布局。这项工作建议在可扩展实现中改善离子陷阱连接性能的路线。与集成的光学解决方案一起,这有助于互连的二维阵列中的模块化陷阱离子量子计算。
Li-Power电池组18 V; Li-Power电池组12 V; Li-Power电池组36 V; Li-Power电池组14.4 V; Li-Power插件电池组; LIHD电池组18 V; LIHD电池组DS 18 V用于秋季保护; LIHD电池组12 V; LIHD电池组36 V; 625026000/321001450(WH 36); 625596000/321000550(WH 36); 625027000/321001470(WH 72); 625028000/321001490(WH 94); 625406000/321001120(WH 24); 625453000/316046040(WH 54); 625529000/321000130(WH 187); 625590000/321000390(WH 58); 625595000/321000540(WH 29); 625438000/316045190(WH 24); 625585000/321000270(WH 48); 625367000/321001000(WH 72); 625368000/321001040(WH 99); 625369000/321000980(WH 144); 625549000/321001600(WH 180); 625349000/321001140(WH 48); 625344000/321000810(WH 223); 624989000/321001640(WH 72); 624990000/321001650(WH 99); 624991000/321001660(WH 180)Li-Power电池组18 V; Li-Power电池组12 V; Li-Power电池组36 V; Li-Power电池组14.4 V; Li-Power插件电池组; LIHD电池组18 V; LIHD电池组DS 18 V用于秋季保护; LIHD电池组12 V; LIHD电池组36 V; 625026000/321001450(WH 36); 625596000/321000550(WH 36); 625027000/321001470(WH 72); 625028000/321001490(WH 94); 625406000/321001120(WH 24); 625453000/316046040(WH 54); 625529000/321000130(WH 187); 625590000/321000390(WH 58); 625595000/321000540(WH 29); 625438000/316045190(WH 24); 625585000/321000270(WH 48); 625367000/321001000(WH 72); 625368000/321001040(WH 99); 625369000/321000980(WH 144); 625549000/321001600(WH 180); 625349000/321001140(WH 48); 625344000/321000810(WH 223); 624989000/321001640(WH 72); 624990000/321001650(WH 99); 624991000/321001660(WH 180)
1)A。Yoshino,K。Sanechika:日本专利,2128922(1984)。2)A。Yoshino,M。Shikata;日本专利,2668678(1986)3)H.4)UACJ Foil Corporation网站。com/en/products/foil.html> 5)X. Zhanga,T。M. devine。 :电化学学会杂志,153(2006)375-383。 6)M。M. M. Morita,T。Shibata,N。Yoshimoto,M。Ishikawa:Electrochimica Acta,47(2002)2787-2793。com/en/products/foil.html> 5)X. Zhanga,T。M.devine。:电化学学会杂志,153(2006)375-383。6)M。M. M. Morita,T。Shibata,N。Yoshimoto,M。Ishikawa:Electrochimica Acta,47(2002)2787-2793。
1。H. T. Chen,J。Padilla,J。M. O. Zide,A。C. Gossard,A。J. J. J. J. J. 2。 Express 17(2),819–827(2009)。 3。 H. T. Chen,J。F。O'Hara,Azad,A。J. J. 光子学2(5),295–298(2008)。 4。 W. J. J. Patilla,A。J。Jt.Strete,M。Lee和R. D. Averitt, 修订版 Lett。 96(10),107401(2006)。 5。 N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T. 修订版 Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。H. T. Chen,J。Padilla,J。M. O. Zide,A。C. Gossard,A。J. J. J. J. J.2。Express 17(2),819–827(2009)。3。H. T. Chen,J。F。O'Hara,Azad,A。J. J. 光子学2(5),295–298(2008)。 4。 W. J. J. Patilla,A。J。Jt.Strete,M。Lee和R. D. Averitt, 修订版 Lett。 96(10),107401(2006)。 5。 N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T. 修订版 Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。H. T. Chen,J。F。O'Hara,Azad,A。J. J.光子学2(5),295–298(2008)。4。W. J. J. Patilla,A。J。Jt.Strete,M。Lee和R. D. Averitt,修订版Lett。 96(10),107401(2006)。 5。 N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T. 修订版 Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Lett。96(10),107401(2006)。5。N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T. 修订版 Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T.修订版Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Lett。106(3),037403(2011)。6。Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang,Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Lett。35(21),3586–3588(2010)。7。H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt,修订版Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Lett。103(14),147401(2009)。8。Express 18(13),13425–13430(2010)。R. Singh,E。Plum,W。Zhang和N. I. 9。 T. Driscoll,H.-T。 Kim,B.-G。 Chae,B.-J。 Kim,Y.-W。 Lee,N。M. Jokerst,S。Palit,D。R. Smith,M。Di Ventra和D. N. Basov,“记忆超材料”,《科学》 325(5947),1518-1521(2009)。 10。 J. Han和A. Lakhtakia,“可热可调的Terahertz超植物的半导体拆分谐振器”,J。Mod。 选择。 56(4),554–557(2009)。 11。 J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。R. Singh,E。Plum,W。Zhang和N. I.9。T. Driscoll,H.-T。 Kim,B.-G。 Chae,B.-J。 Kim,Y.-W。 Lee,N。M. Jokerst,S。Palit,D。R. Smith,M。Di Ventra和D. N. Basov,“记忆超材料”,《科学》 325(5947),1518-1521(2009)。 10。 J. Han和A. Lakhtakia,“可热可调的Terahertz超植物的半导体拆分谐振器”,J。Mod。 选择。 56(4),554–557(2009)。 11。 J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。T. Driscoll,H.-T。 Kim,B.-G。 Chae,B.-J。Kim,Y.-W。 Lee,N。M. Jokerst,S。Palit,D。R. Smith,M。Di Ventra和D. N. Basov,“记忆超材料”,《科学》 325(5947),1518-1521(2009)。 10。 J. Han和A. Lakhtakia,“可热可调的Terahertz超植物的半导体拆分谐振器”,J。Mod。 选择。 56(4),554–557(2009)。 11。 J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。Kim,Y.-W。 Lee,N。M. Jokerst,S。Palit,D。R. Smith,M。Di Ventra和D. N. Basov,“记忆超材料”,《科学》 325(5947),1518-1521(2009)。10。J. Han和A. Lakhtakia,“可热可调的Terahertz超植物的半导体拆分谐振器”,J。Mod。选择。56(4),554–557(2009)。 11。 J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。56(4),554–557(2009)。11。J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。物理。Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。Lett。97(7),071102(2010)。12。R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。R. Singh,I。A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W.物理。Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。Lett。99(20),201107(2011)。13。H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,”修订版Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。Lett。105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。105(24),247402(2010)。14。B.B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J.B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。Express 18(16),17504– 17509(2010)。
请勿以超过其最大安全电压(例如 4.2V)的电压对电池进行充电 - 通常由任何电池内置保护电路负责 请勿将其放电至低于其最小安全电压(例如 3.0V)- 通常由任何电池内置保护电路负责 请勿吸收超过电池所能提供的电流(例如约 1-2 C )- 通常由任何电池内置保护电路负责 请勿使用超过电池可承受的电流(例如约 1 C )对电池进行充电 - 通常由任何电池内置保护电路负责,但也可通过调整充电率使用充电器进行设置 请勿在高于或低于特定温度(通常约 0-50 摄氏度)的温度下对电池进行充电 - 有时由充电器处理,但只要充电率合理,通常就不是问题。
由Elsevier出版。这是作者接受的手稿:创意共享归因许可证(CC:BY 4.0)。最终发布的版本(记录的版本)可在线访问:10.1016/j.cej.2024.153827。请参考任何适用的发布者使用条款。
背景和目标:由于失去随访的患者的数量,纵向研究中缺少数据是一个无处不在的问题。内核方法通过成功管理非矢量预测因子(例如图形,字符串和概率分布)来丰富机器学习场,并成为分析由现代医疗保健诱导的复杂数据的有希望的工具。此pa-提出了一组新的内核方法,以处理响应变量中缺少的数据。这些方法将用于预测糖化血红蛋白(A1C)的长期变化,这是用于诊断和监测糖尿病进展的主要生物标志物,以探索探索连续葡萄糖(CGM)的预测潜力。
