摘要:认可采用环保生物降解塑料作为对塑料污染规模的回应的措施,这对来自自然的材料的创新产品产生了需求。离子液体(ILS)具有破坏生物聚合物的氢键网络,增加生物聚合物链的迁移率,减少摩擦并产生具有各种媒介和机械性能的材料。由于这些品质,IL被认为是增塑生物聚合物的理想选择,使它们能够满足生物聚合材料的广泛规格。该迷你审查讨论了不同的IL塑料对由各种生物聚合物(例如淀粉,壳聚糖,藻酸盐,纤维素)制成的材料的加工,拉伸强度和弹性的影响,并特别涵盖了IL塑料包装材料和生物医学和成型化学物质的材料。还讨论了针对IL生物聚合物的基于IL的增塑剂中的挑战(成本,规模和生态友好性)和未来的研究方向。
USB Type C 连接器带有 5.1k CC 电阻,因此它可以与任何计算机或电源配合使用,以获得 5V 和高达 1A 的独立直流或太阳能输入 - 侧面的两个垫可用于连接 5 ~ 18V 电源,可以代替 USB 使用。如果输入是太阳能电池板,充电芯片将调整电流消耗,使电压不会低于电池电压,从而优化太阳能输入。无需大电容来稳定它,并且您可以获得近 MPPT 功能,而无需 MPPT 的成本和复杂性。默认充电速率为 1A,但您可以切断正面的 IS 跳线并在背面焊接任一跳线以将速率设置为 500mA 或 250mA 所有现代单节 LiPoly 或 LiIon 电池的默认 3.7V 标称/ 4.2V 最大电池化学性质/电压。您可以通过切断正面的 VS 跳线并在背面焊接跳线,将 LiFePO4 电池的电压设置为 3.2V/3.65V 负载电源路径 - 如果在连接 USB/DC/太阳能电源时负载连接器正在吸收电流,则它将默认从充电器吸收电流,任何剩余电流都将流向电池。这样可以防止电池不断充电/放电,从而缩短电池寿命。来自 USB/DC/太阳能的最大吸收量仍然为 1A,如果您需要更多电流,它将来自电池,并且芯片可以提供从电池到负载输出高达 3A 的电流尖峰!受调节的 4.5V 最大负载输出 - 无论 USB 或 DC/太阳能输入端的电压是多少,由于内部电压调节器,负载输出端口都不会超过 4.5V。但是,在处理大电流和高直流电压时请记住这一点,因为 LDO 会使电路板开始过热并限制电流。三个状态 LED - 橙色充电 LED、红色故障 LED 和绿色电源良好 LED。充电/故障引脚也位于左侧分线板上。热敏电阻 - 切断 TH 走线,您可以将 10K 热敏电阻连接到 TH 焊盘,这将调整充电速率以防止电池过热。芯片启用可禁用充电器。安装孔!
锂离子电池 (LIB) 是一种很有前途的电池技术,广泛应用于消费电子产品、电动汽车 (EV) 和固定式储能应用。LIB 回收是对已达到使用寿命的电池进行回收,以回收其内在材料,最好是将其带回制造供应链。回收这些电池是一个多阶段过程,包括收集、分类、拆卸、物理分离和精炼以回收内在材料等步骤。其中一些材料被归类为印度制造业的关键或战略材料,回收它们有助于缓解供应链风险并减少进口依赖。我们估计,到 2030 年,奥里萨邦可能产生约 6.6 千吨累计 LIB 废物,主要受电动汽车和电信塔等固定式储能应用以及消费电子产品的普及推动。为了提供更多信息,根据我们的分析,可以从这些 LIB 废物中回收大约 100 吨锂。一个汽车锂离子电池组(NMC532)可能包含大约 8 公斤锂(Castelvecchi 2021);因此,从这些废物中提取的 100 吨锂理论上可以为 12,500 辆汽车电池组供电。
Altiux Innovations是一个软件和产品工程服务组织,致力于帮助您加速物联网解决方案和产品的开发。我们在整个IoT开发周期中提供专门的工程服务,从咨询,设备工程,云和移动应用程序开发,数据分析以及支持和维护。Altiux已开发了一个IoT Toolkit -BoxPwr™。BoxPwr是一套为传感器节点和执行器,通信网关,边缘计算和云连接性的软件框架的生产套件,有助于加速物联网产品和解决方案开发。
摘要我们描述了表面电极离子陷阱连接的设计,这是大尺度离子陷阱阵列的关键元素。使用双目标优化方法设计电极,该方法保持了总伪电量曲率,同时最小化沿离子传输路径的轴向伪电势梯度。为了促进在多个陷阱区域中的平行操作的激光束输送,我们在此X结陷阱的每个臂上实现了集成的光学器件。提出了商业铸造制造的陷阱芯片的布局。这项工作建议在可扩展实现中改善离子陷阱连接性能的路线。与集成的光学解决方案一起,这有助于互连的二维阵列中的模块化陷阱离子量子计算。
请勿以超过其最大安全电压(例如 4.2V)的电压对电池进行充电 - 通常由任何电池内置保护电路负责 请勿将其放电至低于其最小安全电压(例如 3.0V)- 通常由任何电池内置保护电路负责 请勿吸收超过电池所能提供的电流(例如约 1-2 C )- 通常由任何电池内置保护电路负责 请勿使用超过电池可承受的电流(例如约 1 C )对电池进行充电 - 通常由任何电池内置保护电路负责,但也可通过调整充电率使用充电器进行设置 请勿在高于或低于特定温度(通常约 0-50 摄氏度)的温度下对电池进行充电 - 有时由充电器处理,但只要充电率合理,通常就不是问题。
摘要 电池组既表现出固有的电池间差异,也表现出温度和其他应力因素的时空差异,从而影响电池退化路径的演变。为了解释这些变化和退化或电池扩散的差异,我们提出了一种利用 3 参数非齐次伽马过程对锂离子电池退化进行建模的方法。该方法可预测任何电池架构的容量衰减或故障时间,并使用加速因子调整电池拟合退化数据的分布。在电池组级别,使用并联和串联配置的伽马分布变量组合对电池进行建模。将不同热条件下的容量衰减或故障时间的实际值与预测值进行比较,显示相对误差在 1 – 12% 范围内。我们还提出了一种通过分析样本量对估计不同电池组退化的影响来估计建模扩散和退化路径演变所需的最少电池数量的方法。这种采样策略对于降低设计电池组、电池管理系统和电池热管理系统所需的运行模拟的计算成本特别有用。
建筑部门在所有部门的运营能源消耗和温室气体排放中的份额最高。许多国家设定的环境目标迫使需要改善现有建筑股票的环境足迹。建筑改造被认为是该方向的最有希望的解决方案之一。在本文中,提出了用于评估必要的建筑包络和能源系统改造的替代模型。人工神经网络被利用以建立此模型,以在准确性和计算成本之间取得良好的平衡。对所提出的模型进行了培训和测试,用于瑞士苏黎世市的案例研究,并将其与使用构建模拟和优化工具的建筑改造最先进的模型之一进行了比较。替代模型在较小的输入集上运行,而推导改造溶液所需的时间从3.5分钟减少到16.4μsec。结果表明,所提出的模型可以显着降低计算成本,而无需大多数改造维度的误差准确性。例如,改装成本和能源系统SE部门的平均精度为r 2 = 0。9408和F 1得分= 0。9450。最后,重要的是,这种替代改造模型可以有效地用于宽面积的自下而上的改造分析,并有助于加速采用改造措施。