摘要:认可采用环保生物降解塑料作为对塑料污染规模的回应的措施,这对来自自然的材料的创新产品产生了需求。离子液体(ILS)具有破坏生物聚合物的氢键网络,增加生物聚合物链的迁移率,减少摩擦并产生具有各种媒介和机械性能的材料。由于这些品质,IL被认为是增塑生物聚合物的理想选择,使它们能够满足生物聚合材料的广泛规格。该迷你审查讨论了不同的IL塑料对由各种生物聚合物(例如淀粉,壳聚糖,藻酸盐,纤维素)制成的材料的加工,拉伸强度和弹性的影响,并特别涵盖了IL塑料包装材料和生物医学和成型化学物质的材料。还讨论了针对IL生物聚合物的基于IL的增塑剂中的挑战(成本,规模和生态友好性)和未来的研究方向。
上下文:今天,由于储能设备的不断增加(移动和固定),专门用于电池的研究仍然是一个主要挑战。li-ion技术是该领域的领导者,涉及有效但有限的电极材料,导致新材料的发展。
添加功能,仅在进一步反思或明确提示后重新审视此假设。同样,大学的成员可能会隐含地假设即将出义的总统希望他们制定新的计划,而不是批评现有计划。亚当斯和同事的发现有什么影响?未能考虑到情况通常可以通过删除而不是添加来改善情况有许多现实世界的后果。例如,当人们对自己的房屋装饰感到不满意时,他们可能会通过狂欢并获得更多家具来解决这种情况 - 即使摆脱混乱的咖啡桌也同样有效。对于资源剥夺的消费者来说,这种趋势可能特别明显,他们倾向于特别专注于获取物质商品3。这不仅损害了这些消费者的财务状况,而且会增加对我们环境的压力。在较大的范围内,个人决策者对加性解决方案的支持可能会导致有问题的社会现象,例如正式组织4和近乎通用的,但在本质上是不可持续的,对经济增长的追求5。Adams及其同事的工作指出了一种避免这些陷阱的方式 - 决策者和组织领导人可以明确征求和价值提议,以减少而不是增加。例如,大学校长可以指定删除委员会或政策的建议是期望和赞赏的。此外,个人和机构都可以采取自我控制措施来防止默认趋势添加。消费者可以最大程度地减少其存储空间来限制购买的购买,而组织可以指定触发自动关闭的Sunset条款 - 未能实现特定目标的计划。值得注意的是,对添加的偏见不太可能始终适用。在某些情况下,可以说要更容易产生次障碍的变化,因为这些变化不需要想象一些尚未存在的东西。的确,当人们想象情况如何有所不同时,他们更有可能通过取消采取的动作而不是添加他们未能采取的行动来做到这一点。向前看,当我们愿意想象删除事件扩展到删除功能时,值得探索,从而帮助我们通过减法来解决问题。
•仅在3分钟内完成完整的测试周期•六个sigma(6σ)被验证为过程控制工具•高流体循环速率,确保从PCBA快速去除离子污染物,同时始终提供平稳的无气循环,在所有时间提供平稳的循环•唯一的曲线拟合分析算法(拟合的功能)•唯一的测试能力•固体测试的结果•均匀测量的型号,•型号的均值• <0.005µs/cm•准确的测量,即使测试表面积的测试解决方案的比例是巨大的•CO 2补偿功能,以消除污染结果中大气污染的任何影响•自动温度补偿•自动温度补偿•通常在PCB/组件处理框架的新范围内完全再生,•整体上的整体范围+ All of Alld Corporys+ All Servance+ All conterance+ All nestianal Corperance•所有国际范围•所有国际范围•所有国际范围•所有国际范围•所有国际范围• R&R(可重复性和可靠性)约为2%•CM+系列系统提供的精度,灵敏度,线性,精度和可重复性•软件与Windows 8兼容的软件
近年来,各个经济部门使用的高压发电技术根据应用领域和性质的不同,面临着许多要求,特别是使用寿命、环境安全、工作效率和能源效率等要求[1-7]。特别是在当今使用的具有光辐射的生物物理装置中,杀虫装置的能源需要高于~3000 V的电压,这对人类来说是安全的。在这种类型的设备中,需要交流220伏电源来产生高压。这不仅增加了能耗,还给它们的使用带来了不便。例如,考虑到在现场使用生物物理设备,将它们连接到网络需要使用与影响范围相等的连接电缆。这反过来又导致了高能耗和不便。用于放大半导体电信号的晶体管的发明使解决此类问题成为可能。如今,这种晶体管广泛应用于各个领域的电信号放大,具有节能、低成本、操作准确等特点[5-9]。在这项研究中,研究人员开发了一个用于产生安全高压的计算机模型
导电聚合物是混合的离子 - 电导导体,它们是新兴的神经形态计算,生物电子和热电学的候选者。然而,其多体相关的电子运输物理学的基本方面仍然很少理解。在这里我们表明,在P型有机电化学晶体管中,可以从价带中删除所有电子,甚至可以访问更深的频带而不会降解。通过添加第二个场效应的门电极,可以在集合掺杂状态下注入其他电子或孔。在反应响应现场诱导的电子载体密度变化的情况下,我们观察到令人惊讶的,非平衡的传输特征,这些特征可为相互作用驱动的驱动驱动的驱动式驱动的,柔软的coulomb间隙的形成提供独特的见解。我们的工作确定了通过利用电子电荷和柜台耦合系统中的非平衡状态来实质上增强导电性聚合物的运输特性的新策略。