Andrea Vergallo,Pablo Lemercier,Enrica Cavedo,Simone Lista,Eugeen Vanmechelen等。等离子体ββ-SECRET1 1。 。 。 。 。 。10.1002/alz。
设备功能NXP I.MX6独奏臂Cortex-A9,800 MHz内存4-GB Flash ROM; 1-GB DDR RAM Add-on memory 1x SD card slot Display 5.5, 800 × 480 pixels, Touchscreen Battery capacity 2400 mAh Communication via Bluetooth Low Energy V4.0, WLAN 802.11 b/ g/n Included software Turck RFID software, SDK available as free download Operating system Custom Android ROM Barcode 2D Imager (reads 1D and 2D bar codes) Docking station connection type USB 3.1 type-c
工程。哌嗪功能组进入由三个[pbbr 6] 4-八面体包含的空间,将pb-br-pb推向靠近直线(最大pb-br-pb角〜180°),抑制倾斜度以及电子量子coupling。同时,乙基位于层之间,并贡献了极大的有效层间距离(2.22Å),从而进一步促进了载体的运输。结果,EPZPBBR 4同时证明了高μτ产物(1.8×10 -3 cm 2 V -1)和较大的电阻率(2.17×10 10Ωcm)。组装的X射线检测器在相同的偏置电压下达到1.02×10 -10 A CM -2的低黑暗电流,高灵敏度为1240μCGy-1 cm -2。实现的特异性检测(噪声电流密度的比率为1.23×108μcGy-1 cm -1 a -1 a -1/2)是所有报道的钙钛矿X射线检测器中最高的。
摘要 - 通过其协同化的化学,电和热效应对医疗应用显示出巨大的前景,可以诱导治疗结果。但是,对复杂生物表面的安全且可重现的血浆治疗构成了广泛采用用于医疗应用的CAP的重大障碍。对血浆和生物表面之间相互作用的预测建模,因此,由于缺乏对血浆表面相互作用的机械理解,可以跨越大量不同的长度和时间尺度,因此在很大程度上量化和预测血浆治疗结果的系统方法仍然难以捉摸。此外,生物瓶盖设备中的实时感测能力通常受到限制,由于治疗过程中的内在血浆和表面变异性以及对外部扰动的敏感性,这可能对等离子体处理有害。所有这些挑战都可以使生物表面的可再现和有效的血浆处理难以实现,这是由于人类手持帽装置的运行而导致的错误。机器学习和数据驱动的方法在以三种主要方式解决这些挑战方面特别有用:(i)数据驱动的难以模型的等离子表面相互作用和等离子体治疗结果的建模; (ii)实时学习血浆和表面诊断的数据分析; (iii)开发可靠有效的帽处理的预测控制器。本文讨论了机器学习在这些领域加速血浆医学研究的希望,朝着机器学习辅助和自动化的帽子处理复杂的生物表面处理。
■RFID标签的移动读写和编写■使用NFC手持式手持,可通过UHF进行扩展■2D成像器,相机■可以升级到Android 14■。TURCK RFID应用程序用于阅读和写入标签■使用USB-C,蓝牙5.0 BLE和Wi-Fi 802.11ac■保护类IP67■在整个操作温度范围内,它在MIL-STD-810G的混凝土上的高度下降了1.2 m
描述遗传测试可用于涉嫌患有心脏离子通道病的个体,包括长QT综合征(LQT),儿茶酚胺能多态性心室心动过速(CPVT),Brugada综合征(BRS)和近QT综合征(SQTS)。这些疾病在临床上是异质性的,可能从无症状到心脏猝死(SCD)范围。对与这些通道病有关的变体进行测试可能有助于诊断,风险分层预后和/或确定无症状家庭成员疾病的易感性。目的本证据综述的目的是检查心脏离子通道病的遗传检测(例如,长QT综合征,短QT综合征,布鲁加达综合征,catolamin综合征,catecholamin能多态性心脏心动过速)是否会改善与已知通道或涉嫌相对症患者的患者,可改善患者的健康状况。背景心脏离子通道病的心脏离子通道病是由基因中的变体代码为心脏离子通道的蛋白质亚基。这些通道对于打开或关闭以允许离子流入或流出细胞的细胞膜成分至关重要。这些离子的调节对于维持正常的心脏作用潜力至关重要。这组疾病与心室心律不齐和心脏猝死风险增加有关(SCD)。这些先天性心脏通道病可能难以诊断,诊断不正确的含义可能是灾难性的。表1。心脏离子通道病的流行病学任何心脏通道病的患病率仍然不明显,但被认为在2000年至1分之间,一般人群中有3000人中的1人。1,有关长QT综合征(LQTS),Brugada综合征(BRS),儿茶酚胺能多态性心脏心动过速(CPVT)和短QT综合征(SQT)的数据。
摘要 - 本文专用于在锂离子电池单元的规模上使用PCM金属泡沫复合材料设计最佳热管理系统。研究了PCM和PCM金属泡沫复合材料吸收由锂离子细胞产生的热量的能力,开发了数学和数值模型。该建模基于从CERTES实验室中开发的新实验测试工作台进行的表征实验收集的数据。为了表征锂离子细胞的热行为,开发的二维数值模型集成了Brinkmann-Forchheimer扩展的Darcy方程,焓孔隙率法和二元能量方程。数值研究是通过耦合MATLAB和COMSOL多物理学进行的。结果表明,添加铝泡沫可以对细胞进行更有效的热管理。优化研究表明,低估厚度(所需的PCM质量)会导致极端温度。还发现,额外的PCM添加对细胞表面温度没有很大影响。
摘要:拓扑化学是指固态反应的一般类别,其中前体和产品在其晶体结构中表现出强烈的案例。各种低维材料通过在其2D板之间或通过范德华(VDW)相互作用束缚的1D链之间容纳来宾原子或分子,都会受到这种逐步结构的转化。这些过程是由客人和主机框架之间的氧化还原反应驱动的,在这些反应中,过渡金属阳离子已被广泛利用为氧化还原中心。拓扑化学加上这种阳离子氧化还原,不仅可以采用诸如锂离子二级电池之类的技术应用,而且还可以作为分层过渡金属化合物的结构或电子微调的强大工具。近年来,我们一直在追求超出这种阳离子氧化还原拓制化学以外的材料设计,该底座层次化学大多仅限于2D或1D VDW系统。为此,我们提出了由2D阵列的非VDW化合物的新的拓扑化学反应,该反应由阴离子chalcogen二聚体的2D阵列与氧化还原intert宿主阳离子层交替。发现这些chalcogen二聚体与外部金属元件发生氧化还原反应,触发(1)插入这些金属以构建2D金属硫化剂,或(2)(2)去构成chalcogen anions。从整体上讲,这种拓扑化学就像“拉链”,在那里,阴离子chalcent-chalcogen键的还原性裂解为非VDW材料的空间打开了空间,从而形成了新的分层结构。关键字:拓扑化学,阴离子氧化还原,插入,辣椒剂,低维材料■简介这种观点简要总结了阴离子氧化还原拓扑化学实现的独特结构转换的开创性示例以及其合成和特征的挑战。
摘要 - 锂离子电池在电动汽车中的大规模应用需要细致的电池管理,以确保车辆的安全性和性能。温度在锂离子电池的安全性,性能和寿命中起着重要作用。因此,电池管理系统应及时监控电池的温度(SOT)。由于电动汽车的机载温度传感器有限,大多数电池的SOT必须通过其他测量的信号(例如电流和电压)估算。为此,本文通过用机器学习将基于物理的热模型梳理,开发了一种准确的方法来估计电池的表面温度。使用集团的质量热模型来提供机器学习的电池温度的先验知识。与温度相关的特征(例如内部电阻)实时提取,并将其作为补充输入中馈入机器学习框架,以提高估计的准确性。将卷积神经网络与长期短期记忆神经网络相结合的机器学习模型已与热模型依次集成,以了解模型输出与实际温度值之间的不匹配。已针对实验结果进行了验证,与常规的基于纯热模型和纯数据驱动的方法相比,准确性提高了79.37%和86.24%。
腐蚀抑制剂在工业和学术界都受到广泛关注。1 - 3它们具有简单实施,快速效果和高成本效率的优势。有机腐蚀抑制剂主要通过物理或化学吸附形成蛋白质膜,而无机腐蚀抑制剂主要产生沉淀膜和氧化物膜。与抗腐蚀措施(例如耐腐蚀材料和涂料)相比,使用腐蚀抑制剂是消耗的,需要连续供应,这增加了与手动操作的成本和时间相关。4 - 7由于常规腐蚀抑制剂无法巧妙地响应变化的腐蚀环境,因此有必要开发一种可以针对特定区域并增强保护的智能响应抑制剂系统,从而提高了抑制剂的利用率和效率,该抑制剂的效率为8,9,该抑制剂在本文中被称为智能抑制剂。同时,近年来腐蚀抑制剂和涂料之间的协同作用也是研究的重点。使用腐蚀抑制作用来修复涂层的损坏区域并形成自我修复