enough 及其同事 [2] 发现 LiCoO 2 正极可以在 3–4.3 V 相对于 Li + /Li 0 的范围内提取大量的 Li +。1982 年,Yazami 和 Touzain 报道了以石墨为固体电解质时 Li + 离子的电化学活性,这成为了商业化锂离子电池 (LIB) 的重要基础。 [3] 1985 年,Yoshino 发明了一种由 LiCoO 2 正极和碳质负极组成的新电池,它显示出合理的可逆容量和显著增强的循环性能。 [4] 随后,索尼于 1991 年将 LIB 商业化;与镍镉和镍氢电池相比,它们表现出更高的质量能量密度和体积能量密度。 [5] 由于其高可逆容量和可观的日历寿命,LIB 已广泛应用于消费产品(如相机和笔记本电脑)和纯/混合动力 (H) 电动汽车 (EV)。根据组成 LIB 的元素价格表,钴(15.54 美元)比镍、锰和铝贵,后三种元素的价格分别为 5.90 美元、1.06 美元和 0.77 美元 LB −1(2020 年 2 月 6 日的实时价格,http://www.infomine. com/investment/metal-prices/)。这促使人们寻找低成本、高容量的替代正极材料,以推广采用 LIB 作为电源的 EV/HEV(图 1 a)。[6] 用层状结构中的其他元素取代钴可能会获得优异的电池性能。例如,富镍的 Li[Ni1−x−yCoxMny]O2 具有高容量(200–250mAhg−1)和高电压操作(≈3.8V vs Li0/Li+)以及更好的化学稳定性,由于 Ni3+/4+(eg)氧化还原能与 Co3+/4+(t2g)和 Mn3+/4+(t2g)带上方的 O2−2p 带顶部没有明显的重叠,所以氧损失更少。 [7,8] 然而,由于 Li+ 和 Ni 2+ 的离子半径相似(0.76 Å),合成化学计量的 LiNiO 2 很困难,即在合成过程中,Ni 2+ 很容易占据锂板中的 3b 锂位并形成[Li 1-xNix]3a[Ni1-x]3b[O2]6c。锂层中的 Ni 2+ 不仅阻碍了 Li+ 的顺利扩散,而且导致不可逆容量和较差的循环寿命。[9] 通常,LiNiO 2 在深度脱锂后表现出从第一个六方到单斜(H1 到 M),单斜到第二个六方(M 到 H2),最后从第二个六方到第三个六方(H2 到 H3)相的渐进相变,[10] 这限制了 LiNiO 2 的制备。
任务是解释一组与化学相关的问题,涉及晶体结构,包装因子,配位数,密度和晶格参数。1)对于以面部为中心的立方金属,通过考虑球的体积(原子)来得出并计算包装因子。回想一下,半径为“ r”的球体的体积由(4/3)πr³给出。2)NaCl和CSCL都是以面部为中心的立方结构。确定NaCl中Na和NaCl中CL的配位数,考虑到其离子半径:116 pm钠的钠和氯化物的167 pm。3)使用其公式的重量(58.44 g/mol)和晶格常数(5.640Å)来计算NaCl的密度。4)确定以人体中心结构的钨的配位数,因为其共价半径(单键)为137 pm。5)使用公式:ρ=(n×m) /(a³×n_a)6)基于其晶体结构和原子质量(183.84 g / mol)来计算钨的密度,鉴于tantalum的边缘长度为0.330 nm,从该信息中计算出该信息,并在该信息中计算出tantalum的边缘长度。7)黄金的晶体结构是以面部为中心的立方体,密度为19.3 g/cm³。使用它来确定其晶格常数(a)。8)计算银的面部中心立方单元的边缘长度,因为其半径为9.09 x 10^-11 m,密度为10.5 g/cm³。9)polonium采用简单的立方结构,而其他则是离子的。在PM中确定其单位电池边缘的长度。13)石墨烯是由常规的SP²杂交碳原子建造的二维晶格。10)如果氧化镁具有面部为中心的立方结构,其原子半径为mg(65 pm)和O(140 pm),密度为3.58 g/cm³,则计算其晶格常数(a)。11)鉴于氟化钙CAF2具有FCC Bravais晶格,并且在分数坐标处的Origin和F的CA基础上,绘制了该结构的一个常规立方单元。12)确定晶格常数为5.451Å,确定从Ca原子到A埃原子的距离。确定其Bravais晶格并绘制Wigner-Seitz原始单位单元。14)计算石墨烯中最近的邻居原子之间的距离,该原子给出为0.14 nm。15)编写基础向量,以描述石墨烯单位单元中原子的位置,首先是在绝对位置(具有X和Y-Components和Angstroms中的距离),然后在分数坐标中。应使用常规晶格向量表示分数坐标的原子位置,该量子与原始晶格向量相吻合。对于带有空间群227的晶体,通过考虑以下几个方面来确定其点组和Bravais晶格:首先,根据空间组允许的对称操作确定点组;其次,根据空间群是否与原始晶格或非主要晶格兼容,建立原始或居中的Bravais晶格的类型。
修订了客观类型学科能力测试的教学大纲(SAT),以招募招聘,以在高等教育系的化学讲师(学校新)中任职。本文的持续时间为100分。客观类型的主体能力测试(SAT)应涵盖以下主题: - A部分(公共课程和生物化学课程)(60分)无机化学群体理论:群体,对称元素和对称性操作的概念,对点组的分配,对某些无机分子的分配,对乘法的一般繁殖,繁殖,繁殖,繁殖,繁殖,繁殖,繁殖,繁殖,繁殖,繁殖, (矩阵,C 2 V和C 3 V点组的矩阵表示),C 2 V和C 3 V点组的字符和性格表。群体理论在化学键合中的应用(在不同几何和π键的杂交轨道和杂种轨道中的杂交轨道。BF 3,C 2 H 4和B 2 H 6中分子轨道的对称性。 非水溶剂:证明需要非水溶液化学和水作为溶剂的因素是合理的。 硫酸的溶液化学:物理性能,H 2 SO 4中的离子自脱水,高粘度高,高粘度,H 2 SO 4作为酸的化学性,作为脱水剂,作为氧化剂,作为氧化剂,作为一种培养基酸碱中和中性化反应和分化分化的分化的介质。 液体BRF3:物理特性,BRF3中的溶解度,自发,酸碱中和反应,溶解反应和过渡金属氟化物的形成。对称性。非水溶剂:证明需要非水溶液化学和水作为溶剂的因素是合理的。硫酸的溶液化学:物理性能,H 2 SO 4中的离子自脱水,高粘度高,高粘度,H 2 SO 4作为酸的化学性,作为脱水剂,作为氧化剂,作为氧化剂,作为一种培养基酸碱中和中性化反应和分化分化的分化的介质。液体BRF3:物理特性,BRF3中的溶解度,自发,酸碱中和反应,溶解反应和过渡金属氟化物的形成。无机氢化物:分类,制备,粘结及其应用。过渡金属化合物具有键与氢,羰基氢化物和氢化阴离子的键。分类,命名法,韦德的规则,制备,结构和结合在硼氢化物(硼酸盐)和卡顿人中,无机化学中的有机试剂:螯合,螯合,确定螯合物稳定性的因素(环尺寸的效果,金属的氧化状态,金属的氧化状态,金属的氧化状态);在分析中使用以下试剂的使用:二甲基乙二醇(在分析化学中)EDTA(在分析化学和化学疗法中)8-羟基喹啉(在分析化学和化学疗法中)1,10-苯磺烷oltholine(分析化学和化学疗法)(在分析化学和化学疗法中)硫代化学疗法(分析性化学疗法)(分析性化学疗法)(分析性化学方法)(分析)INAICONES(分析)Dithiaz iniazon(分析)Dithiace(分析)Dithiace(分析)Dithiace(Inalistical Chemantication)(分析性化学疗法)Dithiazon(Dithiace)Dithiazone(分析性化学疗法)。金属配体键合-I:晶体场理论的概括,包括在不同环境中脱落D-轨道,影响晶体场分裂大小的因素,结构效应(离子半径,Jahn-Teller效应),热力学效应,晶体场理论的热力学效应(结合,水合和晶格理论),晶体理论,晶体理论,晶体理论,晶体范围,ACFTINE-CRYSTAL TROPDAL-IDECTINE-CRYSTAL IDECTAL IDECTAL IDECTAL IDECTAL-IDECTIND CRYSTAL TROPDAL-FRYSID-ACFTINE-ACFTINE-ACFTINE-FRYSILID(ACFIDINE)在复合物中,用于八面体,四面体和方形平面复合物(不包括数学处理)的分子轨道理论原子光谱:原子中的能级,轨道角动量的耦合,旋转角臂的耦合,旋转角矩,旋转Orbit Orbit,Spin Orbit coupling,Spib Orbit P2案例,