Christopher B. Mtshali 博士是 iThemba 加速器科学实验室 (iThemba LABS) 材料研究部离子束分析 (IBA) 部门的研究科学家。作为一名研究科学家,他专门使用离子束技术对各种材料进行定量和定性分析,例如粒子诱导 X 射线发射 (PIXE)、卢瑟福背散射光谱 (RBS)(实时和正常)、弹性反冲检测分析 (ERDA) 等等。他参与了大学学生的强化培训,指导他们完成荣誉、硕士和博士研究项目。学生的培训包括实验设置技术培训和在监督下运行实验。他从事与氢存储系统相关的研究,特别关注基于 Pd、Ti、Ni 和 Mg 的多层系统。他还在进行测量离子 - 物质相互作用基本参数的实验。他撰写和合作撰写了大量同行评审的科学论文,并在多个本地和国际会议以及夏季和冬季学校展示了他的工作成果。他目前指导和共同指导硕士和博士研究生。他目前还参与了国际原子能机构的协调研究项目,例如国际原子能机构协调研究项目 (CRP) – 聚变技术相关材料辐照和特性离子束技术的开发和应用,以及题为“iThemba LABS 材料研究部离子束加速器跨国访问”的研究项目,该项目是国际原子能机构协调研究项目 – “促进离子束加速器实验”的一部分(以下简称“CRP”)。
聚焦离子束剥离和环形铣削是获取原子探针断层扫描 (APT) 实验和透射电子显微镜中特定位置样本的最常用方法。然而,该技术的主要限制之一来自高能离子束造成的结构损伤和化学降解。这些方面对于高灵敏度样本尤其重要。在这方面,低温条件下的离子束铣削已成为一种成熟的损伤缓解技术。在这里,我们实施了一种低温聚焦离子束方法,以从效率为 19.7% 的四重阳离子钙钛矿基太阳能电池装置中制备用于 APT 测量的样本。与室温 FIB 铣削相比,我们发现低温铣削在产量和成分测量(即卤化物损失)方面显著改善了 APT 结果,这两者都与 APT 样本内缺陷较少有关。基于我们的方法,我们讨论了钙钛矿基太阳能电池材料可靠原子探针测量的前景。还深入了解了组成钙钛矿材料的有机-无机分子的场蒸发行为,目的是扩大 APT 实验对复杂有机金属材料纳米表征的适用性。
分子,它们可以在电场中加速。这些离子可以以多种方式用于修改或表征材料。例如,离子注入工艺用于创建新的表面合金并修改表面相关特性,例如材料的硬度、耐磨性和摩擦性、耐腐蚀性。它还适用于改变机械、电气、光学和化学性质。离子注入在半导体工业中的应用已经很成熟。离子束辅助涂层和涉及离子束的各种等离子涂层可以使涂层厚度在 1-2 微米范围内。这些可以选择性地应用于各种工业应用,也可以扩展到许多医疗应用,例如生物植入物。离子束工艺将继续在进一步理解和改进材料表面处理方面发挥重要作用。
2007 年 11 月,Roth & Rau 的光伏和微电子部门搬迁至独立的工厂。从那时起,Roth & Rau MicroSystems 品牌就代表着微电子和光学行业离子束和等离子技术应用的高度专业化设备。Roth & Rau MicroSystems 位于萨克森州的 Hohenstein-Ernstthal,靠近德国微电子工业的中心。45 名受过高等教育的工艺技术和系统工程员工以及 15 名机械制造员工是独特制造设备成功的关键。3500 平方米的制造区域和办公空间以及 10000 级洁净室(包括自己的计量功能)为系统组装和技术开发提供了良好的环境。Roth & Rau MicroSystems 最近提供两条重要的产品线。离子束技术的高端解决方案包括用于局部离子束修整的 IonScan 系统和用于离子束铣削和离子束沉积的 IonSys 系统。在等离子技术中,PECVD 和 RIE 应用得到解决。MicroSys 利用 AK 平台制造大面积工艺系统,提供基于晶圆的系统。除了这些标准平台外,还制造用于 TCO 涂层的卷对卷机器等系统。Roth & Rau MicroSystems 的产品由所有相关微电子市场的专业合作伙伴分销和服务。有关相应合作伙伴的联系信息,请参阅随附的传单。2008 年展览
摘要 在本篇观点文章中,我们评估了使用聚焦电子和离子束直接制造纳米级超导器件及其在量子技术中的应用的当前研究状况。首先,本文介绍了主要的超导器件及其通过标准光刻技术(例如光学光刻和电子束光刻)制造的方法。然后,展示了通过铣削或辐照对超导体进行聚焦离子束图案化,以及通过聚焦电子和离子束诱导沉积来生长超导器件。我们认为这些无抗蚀剂直接生长技术对量子技术的主要好处包括能够制作电纳米接触和电路编辑、制造高分辨率超导谐振器、创建约瑟夫森结和用于尖端传感器的超导量子干涉装置 (SQUID)、图案化高温超导 SQUID 和其他超导电路,以及探索通量电子学和拓扑超导性。
• 分离扇区回旋加速器 (SSC) 实验室:利用粒子束推进我们对物质核心和恒星燃料的理解,以及辐射与生物系统的相互作用 • 串联加速器实验室:提供离子束分析技术,如 PIXE、ERDA 和 RBS,用于材料研究、材料工程和纳米科学 • 串联和加速器质谱 (TAMS) 实验室:提供用于离子束分析和加速器质谱的不同且互补的工具,作为多学科研究工具
IJClab的Jannus-oray/头皮平台结合了各种机器(离子加速器,离子植入器,透射电子显微镜,同位素分离器),主要用于离子光束修饰(植入/辐照/辐照)和材料和目标生产的离子束分析和离子束分析。多年的技术和科学专业知识的设施益处,并运行各种机器和专用的终点站,从50 eV到11 MeV的大多数稳定元件的离子光束在-170°C到目标的1000°C。平台的特殊性是可用于材料结构和化学表征的原位技术(即在引导几何形状(RBS-C)中的原位卢瑟福后散射光谱法,以及具有单个/双离子束辐照的原位传输电子显微镜(TEM),它们在世界上是独一无二的。值得注意的是,要将设施保持在最新级别(例如在未来几年内购买新的显微镜)。同位素分离器Sidonie是欧洲为数不多的同位素分离器之一,尽管它不太可靠并且需要升级,但仍产生高纯度同位素。Jannus-Oray/Scalp平台已经为学术研究和行业的用户提供了35多年的设施和服务。自2005年以来,Jannus-orsay与法国的CEA/DEN/DMN SACLAY(法国交替的能源和原子能委员会)的三个离子束Jannus-Saclay通过科学利益集团(GIS)Jannus 1。Jannus-oray/Scarp是Emir和2法国加速器网络的创始成员,用于辐射和分析分子和材料。该平台在2018年被标记为IN2P3平台。
在这项研究中,研究了低能(1 keV)AR +离子束照射对多晶Ti磁盘形态的影响。通过切割和机械抛光商业棒来制备目标。通过扫描电子显微镜(SEM)和机械辅助学来表征辐照前后的表面地形。使用各种入射角(αI)以10 18离子/cm 2的总剂量从正常到放牧的几何形状进行辐射。对辐照的Ti靶标的SEM分析揭示了明显的纹理,其表面形态具有各种可实现的表面形态,具体取决于αI。表面特征从具有指纹样图案(0≤αi≤60°)的斑块中的波纹变化到平行于离子束方向的定向结构,例如柱/尖端结构(65≤αi≤75°)和浅层波纹(αi至80°)。这种形态的选择性可以归因于竞争性扩散和侵蚀性方案,在这种情况下,形态的横向均匀性受到晶体晶粒尺寸有限的影响。最后,评估了特征性地形的润湿性和生物兼容性,与未经处理的表面相比,结果表明离子束纹理表面的性能提高了。
重离子束是一种电离辐射,它已作为一种强诱变剂应用于植物育种,并且是一种诱导大规模缺失和染色体重排的有前途的工具。重离子辐照的有效性可以用线性能量转移 (LET;keV µm -1 ) 来解释。不同 LET 值的重离子束会诱发不同类型和大小的突变。已有研究表明,缺失大小随 LET 值的增加而增大,较高的 LET 辐射会诱发复杂的染色体重排。在本研究中,我们将在拟南芥突变体中检测到的重离子束诱导的缺失定位到其基因组中。我们发现,不同的 LET(100 至 290 keV mm -1 )之间的缺失大小相似,其上限受必需基因分布的影响,并且检测到的染色体重排避免了破坏必需基因。我们还重点研究了串联基因 (TAG),即基因组中两个或多个同源基因相邻。我们的结果表明,100 keV µm -1 的 LET 足以破坏 TAG,并且必需基因的分布会强烈影响与其重叠的突变的遗传性。我们的研究结果提供了拟南芥基因组中大量缺失诱导的基因组视图。