分子,它们可以在电场中加速。这些离子可以以多种方式用于修改或表征材料。例如,离子注入工艺用于创建新的表面合金并修改表面相关特性,例如材料的硬度、耐磨性和摩擦性、耐腐蚀性。它还适用于改变机械、电气、光学和化学性质。离子注入在半导体工业中的应用已经很成熟。离子束辅助涂层和涉及离子束的各种等离子涂层可以使涂层厚度在 1-2 微米范围内。这些可以选择性地应用于各种工业应用,也可以扩展到许多医疗应用,例如生物植入物。离子束工艺将继续在进一步理解和改进材料表面处理方面发挥重要作用。
摘要:聚合物的电性能在传感器、储能、微电子和过滤膜等广泛的应用中越来越重要。在本文中,提出了多能金离子注入对氧化石墨烯(GO)、聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)和聚乳酸(PLLA)元素、化学、结构和电性能的影响,以及在 3D 金属-电介质结构合成中的潜在应用。按升序或降序使用三种能量 3.2、1.6、0.8 MeV 的金离子,剂量为 3.75×10 14 cm -2,以升序或降序创建两个样本集,随后通过 RBS、ERDA、EDS 和 AFM 进行分析。RBS 分析用于注入样品中的金深度轮廓表征,轮廓与 SRIM 代码模拟的轮廓相当一致。采用标准两点技术研究了离子辐照所用的参数下的电性能。离子辐照后,方块电阻降低,并且很明显,离子注入能量的上升顺序对电导率的提高的影响比下降顺序更显著。
如果没有汽车、智能手机、电脑等各种产品中所包含的半导体,我们的日常生活就无法实现。另一方面,随着电动汽车(EV)的普及,未来用电量肯定会持续增加。我们需要的是高效利用电力。其中的关键是功率器件(功率半导体)。近年来,作为实现高效利用电力的下一代功率器件材料,碳化硅(SiC)备受关注。住友电工集团旗下的日新离子设备株式会社从 1970 年代开始推动半导体制造工序中不可或缺的离子注入技术的开发,并向市场推出了一流的设备。随着SiC功率器件受到关注,该公司开发了符合社会和市场需求的新型离子注入机,并获得了多方好评。但是,用于SiC功率器件制造的离子注入技术尚未成熟。正在进行产品开发,以实现进一步的发展。通过广泛使用SiC功率器件减少温室气体排放将极大地帮助实现碳中和社会。本期介绍业界第一台专为SiC功率器件设计的离子注入机的开发历史和创新性。
引言目前,光刻是多种半导体器件和集成电路一般生产周期中的主要工艺之一。重氮喹诺酮酚醛 (DQN) 光刻胶广泛用作亚微米和纳米光刻的掩模 [1–4]。现代电子学中形成掺杂区的主要方法之一是离子注入 (II)。该方法可以精确控制掺杂剂浓度,且具有工艺多功能性和灵活性的特点。DQN 光刻胶与紫外线、X 射线和可见辐射的相互作用已得到充分详细研究,而离子辐照引起的过程仍然知之甚少,尽管它们会显著影响所创建器件的质量 [4–6]。在聚合物的 II 期间,辐射诱导过程先前已被证明会发生在离子路径区域内及其外部 [5, 7–9]。例如,在 [5] 中发现了 DQN 抗蚀剂膜在锑离子注入层后面的辐射硬化。然而,导致 II 层后面的 DQN 抗蚀剂的物理机械性能发生变化的辐射诱导过程的机制尚未确定。对于薄膜研究,受抑全内反射 (TIR) 的 FTIR 光谱可以定性和定量地获取固体中复杂有机化合物及其混合物的成分和结构
Tivadar Lohner 1 、Attila Németh 2 、Zsolt Zolnai 1 、Benjamin Kalas 1 、Alekszej Romanenko 1 、Nguyen Quoc Khánh 1 、Edit Szilágyi 2 、Endre Kótai 2 、Emil Agócs 1 、Zsolt Tóth 3 、Judit Budai 4,5 、Péter Petrik 1,* 、Miklós Fried 1,6 、István Bársony 1 和 † József Gyulai 1
PELIICAEN(纳米级离子注入控制和分析研究平台)装置是一种独特的设备,它拥有所有的原位超高真空设备(聚焦离子束 (FIB) 柱、二次电子显微镜 (SEM)、原子力和扫描隧道显微镜 (AFM/STM)),以及它在材料上的纳米结构性能。该装置最近配备了自己的电子回旋共振离子源、使用气动振动绝缘体的新型位置控制平台和快速脉冲装置。它的性能得到了大幅提升,可以选择多种离子,离子注入深度可调至几百纳米,图像分辨率低至 25 纳米,样品上的离子束尺寸低至 100 纳米。凭借所有这些设备,PELIICAEN 装置在执行和分析离子注入和表面改性方面处于国际前沿。
诸如厚度相关的带隙,这对于硅以外的超大规模数字电子学、光电子学和能源应用具有吸引力。 [1] TMD 的无悬挂键结构为实现高质量范德华异质结构与块体半导体提供了独特的可能性,从而实现利用界面电流传输的先进异质结器件。 [2–5] 特别是,单层或几层 MoS 2 与宽带隙半导体(如 III 族氮化物(GaN、AlN 和 AlGaN 合金)和 4H-SiC)的集成,目前在光电子学(例如,用于实现覆盖可见光和紫外光谱范围的高响应度双波段光电探测器)[6–11] 和电子学(例如,用于实现异质结二极管,包括带间隧道二极管)中越来越受到关注。 [12–17]
关键词:SiC、注入、碳帽、退火、注入、蚀刻我们建议使用高级图案化薄膜 (APF®),这是一种通过 Applied Producer® 沉积的 PECVD 碳基薄膜系列,用于解决 SiC 器件的几个加工难题:特别是,我们讨论了它作为 (i) 灵活、高质量离子注入掩模的优势,以及 (ii) 在离子注入后高温活化退火期间作为平面和 3D SiC 结构的保护帽层。将 APF 薄膜集成到注入和蚀刻处理块中的好处与普通光刻胶 (PR)、PVD C 帽和 SiO 2 HM 等替代方法进行了对比。碳化硅 (SiC) 具有非常吸引人的特性 1,包括宽带隙(3X Si)、高 E 击穿(10X Si)、高热导率(3X Si 或 GaN)。大尺寸衬底(最大 200 毫米)的出现导致了 SiC 基器件的广泛应用,预计 2027 年的 TAM2 市场规模将达到 63 亿美元。然而,SiC 加工面临着一些独特的挑战,需要解决这些挑战才能充分挖掘这种化合物半导体的潜力。在本文中,我们建议使用高级图案化薄膜 (APF®),这是一种通过应用材料生产者® 沉积的 PECVD 碳基薄膜系列,可解决几个 SiC 器件加工难题:特别是,我们讨论了它作为(i)灵活、高质量的离子注入掩模,(ii)在离子注入后高温活化退火期间平面和 3D SiC 结构的保护性覆盖层,和(iii)用于改善下一代 SiC 器件的 SiC 沟槽硬掩模 (HM) 图案化的薄膜的优势。在注入和蚀刻处理模块中集成 APF 的优势可与常见光刻胶 (PR)、PVD C-cap 和 SiO 2 HM 等替代方法相媲美。
关键词:离子注入、SiC、封盖、碳、退火。摘要本研究报告了一项广泛的研究,研究了离子注入 SiC 材料高温退火过程中使用的封盖材料对表面粗糙度和质量、掺杂剂分布和扩散以及晶体缺陷的影响。本研究调查了化学气相沉积 (CVD)、物理气相沉积 (PVD) 和热解光刻胶 (PR) 碳封盖材料。CVD 碳层(也称为高级图案化膜 (APF®))是使用 Applied Producer® 沉积的。引言 在加工碳化硅 (SiC) 晶片以制造功率 MOSFET 和二极管 [1] 等微电子器件的过程中,离子注入后在衬底晶片顶部沉积一层保护层,以防止 Si 升华和台阶聚束形成以及其他表面缺陷的出现 [2, 3, 4],从而保持表面质量,这些缺陷发生在激活 SiC 中掺杂剂所需的高温退火步骤中 [5]。这项工作研究了在这种高温退火过程中使用的保护性覆盖材料对表面和块体材料质量的影响。实验细节 在高温 (500 ˚C) 下用铝离子注入样品,铝离子以 180 keV 和 2.5E15 离子/cm2 的剂量加速,以便在约 0.2 微米深度处实现约 2E20 离子/cm3 的峰值浓度。然后用不同的碳基材料覆盖样品,然后在 1800˚C 下退火 30 分钟。然后用 O2 灰分去除保护盖,随后进行清洁和擦洗,然后进行原子力显微镜 (AFM)、在 SICA 工具上实现的表面和体光致发光 (PL) 以及二次离子质谱 (SIMS)。结果我们报告了模拟和 SIMS 显示的铝注入后轮廓之间的出色一致性