摘要:在这项工作中,使用生物聚合物壳聚糖和天然粘土来获得复合材料。这项研究的总体目的是通过添加粘土来改善纯壳聚糖珠的性能(孔隙率,热稳定性和密度),并获得基于壳聚糖的复合材料,以使用蒙古资源从水溶液中吸附重金属,并使用蒙古资源来吸附重金属,并研究吸附机制。天然粘土用酸和热进行预处理以去除杂质。将壳聚糖和预处理的粘土以不同的比率(8:1,8:2和8:3)混合,以获得化学加工,以获得复合珠以吸附铬离子。研究了Cr(III)和Cr(VI)的吸附,这是溶液pH,时间,温度,铬溶液的初始浓度和复合珠的质量的函数。发现,从壳聚糖的混合物中获得的复合珠和质量比为8:1和8:2的粘土分别具有最高的吸附能力(23.5和17.31 mg·g -g -1),Cr(iii)和Cr(iii)和Cr(vi)的吸附能力分别为最佳条件。使用XRD,SEM -EDS,BET和TG分析研究了通过将壳聚糖和粘土混合为8:1和8:2的复合材料的性质。根据XPS分析结果讨论了吸附机制。可以证实,铬离子以其原始形式吸附,例如Cr(iii)和Cr(VI),而无需进行氧化或还原反应。此外,在吸附过程中,CR(III)和Cr(VI)与复合珠的羟基和氨基群有关。吸附过程的动力学,热力学和等温分析表明,壳聚糖/粘土复合珠与CR(III)和Cr(VI)离子之间的相互作用可以视为二阶入学热反应,因此可以使用langmuir iSotherm模型来评估吸附。可以得出结论,复合珠可以用作去除铬离子的吸附剂。
FA初始浓度,[FA] 0的0.05 m和0.50 M. Ambersep 900; [fa] 0 = 0.05 m(黑色圆圈)和0.50 m(红色正方形),琥珀色IRA-96; [fa] 0 = 0.05 m(蓝色钻石)和0.50 m(粉红色星),琥珀石IRA-910; [FA] 0 = 0 = 0.05 m(绿十字)和0.50 m(黄色三角形),固体形状和实线(吸附量),空形和虚线(吸附效率)和mg fa /g r(每克树脂每克甲酸的毫克)。
高能离子的非弹性能量沉积是许多工业规模应用(如溅射和离子注入)的决定性量,但其由动态多粒子过程控制的底层物理通常仅被定性地理解。最近,对单晶靶材进行的透射实验(Phys. Rev. Lett. 124, 096601 和 Phys. Rev. A 102, 062803)揭示了沿不同轨迹的低能离子(比质子重)的非弹性能量损失的复杂能量缩放。我们使用类似蒙特卡洛的二元碰撞近似代码,并配备与撞击参数相关的非弹性能量损失模型,以评估这些情况下局部贡献对电子激发的作用。我们将计算出的轨迹的角强度分布与实验结果进行了比较,其中 50 keV 4 He 和 100 keV 29 Si 离子在飞行时间装置中传输通过单晶硅 (001) 箔(标称厚度分别为 200 和 50 nm)。在这些计算中,我们采用了不同的电子能量损失模型,即轻弹丸和重弹丸的局部和非局部形式。我们发现,无论晶体相对于入射光束的排列如何,绝大多数弹丸最终都会沿着它们的轨迹被引导。然而,只有当考虑局部电子能量损失时,模拟的二维图和能量分布才会与实验结果高度一致,其中引导会显著减少停止,特别是对于较重的弹丸。我们通过评估离子范围与随机表面层厚度的非线性和非单调缩放来证明这些影响与离子注入的相关性。
加湿和洗涤谷物是准备用于研磨的谷物,改善其食物使用程度的过程。在湿润和随后的落叶期间,谷物中发生了物理和生物学变化,因此,壳与谷物的分离促进了胚乳的较小损失。洗涤时,清洁谷物的表面,释放出沉重和轻质的杂质和微弱的颗粒,并去除微生物。要在面粉厂润湿并清洗谷物,它们使用:用冷或温水润湿谷物的机器,以便在水热处理过程中改变其物理特性;在将各种农作物加工成谷物时,在剥离或变平之前,用蒸汽润湿谷物的机器;分离的杂质的机器与流体动力学特性不同[1]。该行业生产两种类型的加湿机器:用于在滴水状态下添加水的水喷射和喷水,用于在喷雾器中添加水,以及与垂直挤压柱的混合洗衣机[2-5]。在面粉铣削行业中使用喷气机的使用使得可以与谷物量成比例地准确剂量水。但是,没有实现其表面均匀的润湿,因此需要设备以允许将潮湿的谷物混合物进行额外混合。在喷雾状态下将水添加到谷物中的机器中实现了晶粒表面的更均匀的润湿[6-8]。水喷水
Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J. (2022)。 使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。 制造科学与工程杂志,144(091012)。 https://doi.org/10.1115/1.4055048Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J.(2022)。使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。制造科学与工程杂志,144(091012)。https://doi.org/10.1115/1.4055048
非正交态的不可区分性是量子力学的标志之一,它既是障碍也是资源。过去几十年来,人们对量子态鉴别 [1-9] 及其应用 [10-12] 进行了大量的理论和实验研究。量子信道鉴别 [13] 是一个相关且内容更丰富的课题,它要复杂得多 [14],许多信道可以明确区分,即使类似状态无法区分 [15,16]。这些理论思想为激动人心的大类信道实验探测打开了大门,包括广泛使用的相移键控 (PSK) 和幅移键控 (ASK) 信道,它们以载波信号的相位或幅度调制方式对数据进行经典编码。这些协议具有自然的量子类似物,其中使用半经典有限长度协议 [1,17] 无法无误地区分信道。与二进制信道区分相比,区分多个量子信道需要更大的希尔伯特空间和更复杂的量子门序列,而原子系统可以很好地满足这些需求。原子系统中的长相干时间[18 – 20]、高保真度单量子比特门[19,21]以及许多长寿命状态的自然存在[22]使它们对量子协议很有吸引力。更诱人的是,原子提供了高维亚稳态流形,用于在单个原子内编码量子位或多个量子位[22 – 29],这对于区分多个信道很有用。此外,原子系统非常适合电磁传感和通信,一个例子是里德堡原子在电磁传感和通信中的巧妙应用。
b“ libs [18]以及钠离子电池中的dess。[19]先前,由钠二(三氟甲磺酰基)酰亚胺(NATFSI)和N-甲基乙酰酰胺(NMA)组成的DES组成的Eutectic摩尔比1:6,这在这项研究中也被证明是可行的电子,用于多个可行的电子电脑,用于多聚体。 (2,2,6,6-四甲基哌啶-1-基 - 氧基丙烯酸酯)(PTMA)电极。[20]但是,据我们所知,这些溶剂尚未与聚合物电极配对,用于构建全有机储能系统。对基于有机电池的研究大约在45年前开始,[21,22],但很快就停止了。[23]发现高容量聚合物(例如PTMA)[24]与相对较高的放电电压配对,再次激发了对有机电极材料的兴趣,从而产生了各种储能应用。[25 \ XE2 \ x80 \ x9331]今天,PTMA是最突出的基于自由基的氧化还原活性聚合物之一。它用作阳性电极,含有稳定的硝氧基自由基,称为2,2,6,6-四甲基哌啶基N-氧基(tempo)。这个自由基具有出色的电化学特性和所需的稳定性。[32] PTMA首先在锂有机电池中使用,平均排放电压为3.5 V,排放能力为77 MAHG 1。[24]本研究中全有机全电池的负电极是基于VIologen的聚合物,该聚合物在其原始状态下包含双阳性电荷的阳离子,在进行了两个单电子传输步骤后,该阳离子在其原始状态下,将其简化为中性物种。[5]在这种情况下,我们使用了交联的聚合物聚(N - (4-乙烯基苯甲酰苯)-N'-Methylviologen)(X-PVBV 2 +),以阻止溶剂中的溶解。[33] PTMA作为正和X-PVBV 2 +作为负电极的组合会导致在阴离子摇椅构型中运行的全有机电池,这是一种可以用有机电极材料实现的稀有细胞类型。[34]与阳离子摇摆椅或双离子电池相比,仅将阴离子用作电荷载体。此类阴离子摇摆椅全有机细胞的其他报道也将基于Viologen的化合物作为负电性化合物,均以水性[35 \ xe2 \ x80 \ x9338]和非含电解质的水性和非高性电解质,[39 \ xe2 \ xe2 \ x80 \ x80 \ x93341]
Elaine Petro 教授 康奈尔大学 分子离子束和束表面相互作用的多尺度建模 电喷雾离子源是卫星推进、生化分析和各种表面处理行业领域的使能技术。这些应用推动了对扩展离子束的物理和粒子碰撞的化学的更深入了解。电喷雾离子羽流对最先进的等离子体建模技术提出了挑战,因为关键过程发生的长度和时间尺度范围很广(即纳米级发射点和厘米级操作体积)。伴随着这些空间梯度的是离子和中性群体中的大密度和速度梯度。此外,电喷雾羽流是具有非麦克斯韦分布的非中性等离子体。我们介绍了最先进的分子离子羽流动力学和化学数值模型,这些模型对于探索设计变量、了解操作条件和提高性能必不可少。除了卫星推进中的应用外,我们还将讨论在其他相关领域利用这些离子源的机会。
1. 简介 量子计算、通信和传感正受到越来越多的关注,因为它们在许多重要任务中都有望实现比传统系统更出色的性能。存在许多不同的量子模态(捕获离子、中性原子、光子、超导和半导体量子比特);它们对光子功能的需求各不相同。在某些系统中,光子充当量子比特,而在其他系统中,光学器件充当量子比特的接口,可以直接准备、操纵或读出量子态,也可以间接作为更大系统的一部分(例如提供经典通信通道或参考激光振荡器)。在所有情况下,光子集成电路 (PIC) 都为实现光学功能提供了一种有吸引力的选择,因为它们体积小;能够创建大型和复杂的光学电路,从而有助于实现功能或量子比特数量的扩展;而且,与离散光学和光学系统相比,它们通常具有更优越的环境稳定性。
Qing Li, 1 , 2 , 3 Hung Chan, 2 , 3 Wei-Xin Liu, 1 , 3 , 4 Chang-An Liu, 1 , 3 , 4 Yunfei Zhou, 1 , 3 , 4 Dan Huang, 2 , 3 Xueliang Wang, 1 , 3 , 4 , 5 Xiaoxing Li, 5 Chuan Xie, 2 , 3 Wing Ying-Zhi Liu, 2 , 3 Xian-Song Wang, 2 , 3 Siu Kin Ng, 1 , 3 , 4 Hongyan Gou, 1 , 3 , 4 Liu-Yang Zhao, 1 , 3 , 4 Winnie Fong, 1 , 3 , 4 Lanping Jiang, 1 , 3 , 4 Yufeng Lin, 1 , 3 , 4 Guijun Zhao, 6 Feihu Bai, 7 Xiaodong Liu, 2 , 3 Huarong Chen, 1 , 2 , 3 Lin Zhang, 2 , 3 , 4 Sunny Hei Wong, 1 , 4 , 8 Matthew Tak Vai Chan, 2 , 3 , * William Ka Kei Wu, 1 , 2 , 3 , * and Jun Yu 1 , 3 , 4 , 9 , * 1 State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China 2 Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China 3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China 4 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China 5 Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China 6 Department of Endoscopy Center, Inner Mongolia Key Laboratory of Endoscopic Digestive Disease, Inner Mongolia people's Hospital, Hohhot, China 7 Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China 8 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 9 Lead contact *Correspondence: mtvchan@cuhk.edu.hk (M.T.V.C.), wukakei@cuhk.edu.hk (W.K.K.W.), junyu@cuhk.edu.hk (J.Y.)https://doi.org/10.1016/j.ccell.2023.06.011