乳腺癌(BC),但约有30%的人无反应。由于ICI的效力取决于癌细胞对肿瘤特性抗原的有效表现,因此增加了这种预定的化合物可以提高ICIS的疗效。方法/研究人群:多醚离子载体抗生素,monensin(mon)的酯和尿电衍生物的文库已被合成。MTT细胞活力测定,以确定MON及其衍生物的IC50值。选择性索引,以识别癌症与非癌细胞的最选择性化合物。主要的组织相容性复合物(MHC)I类和II类表现以及编程的死亡凸式1(PD-L1)表达已使用流式细胞仪确定。蛋白质。为每个实验进行了至少三个生物学重复。结果/预期的结果:MON及其几个衍生物在纳摩尔范围内与MDA-MB-231人类BC细胞系的活性。mon及其最有效的衍生物显着增加了MHC I类和II类表现,并下调了BC细胞系中PD-L1的表达。讨论/意义:目前的发现将导致新的治疗方法的发展,这些方法可以用作单一药物或与现有ICI结合使用,以治疗转移性BC。通过突破我们的理解和发展新疗法的界限,这项研究可以影响改善BC转移性患者的预后。
“曾经无抗生素”(NAE)家禽的生产是当今全世界的常见趋势(Cervantes,2015年)。Despite scientific evidence indicating that specific antibiotic growth promoters (AGP) could still be used selectively and rationally in animal feeding programs (Phillips et al., 2004; Cervantes, 2015), market tendencies and the constant negative publicity in the media against AGP have shifted most poultry integrators to at least some level of NAE production, due to perceived marketing opportunities (Brewer and Rojas, 2008).在禁止AGP禁令之后,对于生产者和整合商,尤其是在肉鸡中,肠道健康问题变得越来越普遍,越来越具有挑战性。这在美国等国家中最为明显,在美国,与AGP禁令一起,也禁止使用离子载体球菌的使用(Ducatelle等人,2023年)。毫无疑问,家禽肠道健康对于优化消化率,最大程度地减少营养排泄物至关重要,因此减轻了氨,气味和其他气体排放的环境影响,并伴随着鸟类和人类工人的健康和福利方面(Nahm,2002; Costa等,2008)。达成共识,AGP似乎以某种方式抑制了肠道炎症并减少胆汁盐脱轭(Lin,2014年),从而掩盖了肠道健康问题(Smith,2019年)。通过研究肠道健康的机制,很明显,从现在开始,只有考虑到对肠道健康的影响可能来自饲料配方/加工的任何变化,才会发生在家禽营养中的进展(Ducatelle等人,2023年,2023年)。
摘要:中性粒细胞外陷阱(NET)是复杂的,基于DNA的,具有细胞毒性蛋白的网络状结构。它们在抗菌防御中起着至关重要的作用,但也与自身免疫性疾病和组织损伤有关。净形成过程(称为Netosis)是一种受调节的细胞死亡机制,涉及这些结构的释放,并且是中性粒细胞独有的。Netosis在很大程度上取决于活性氧(ROS)的产生,可以通过NADPH氧化酶(NOX)或线粒体途径产生,分别导致NOX依赖性或与NOX无关的Netosis。最近的研究表明,在不同情况下,ROS产生,DNA修复和净形成之间存在复杂的相互作用。紫外线辐射可以触发由线粒体ROS和DNA修复驱动的Netosis和凋亡的组合过程,称为凋亡。同样,在钙离子载体诱导的Netosis中,ROS和DNA修复都是关键组成部分,但仅发挥部分作用。在细菌感染的情况下,DNA修复的早期阶段是关键的。有趣的是,在无血清条件下,自发性Netosis是通过NOX衍生的ROS发生的,并具有早期DNA修复抑制可以停止该过程,而后期抑制会增加。DNA修复过程与ROS产生之间的复杂平衡似乎是调节净形成的关键因素,其不同的途径根据刺激的性质而被激活。这些发现不仅加深了我们对Netosis背后机制的理解,而且还提出了对网络有助于疾病病理学的疾病的潜在治疗靶标。
黑色磷纳米片(BPNSS)由于其独特的物理化学特性而在石墨烯以外的2D材料中是新星。[38–47]在黑色磷(BP)晶体中,不同的BP层通过弱的范德华相互作用堆叠在一起,并且磷原子通过在层中通过SP 3杂交共价键相互联系,在每个phos-Phors-Phorus Atom上留下了一对单独的电子。[48] BPNSS沿扶手椅方向显示出重复的蜂窝结构,并沿着Zigzag方向进行双层布置,从而在BPNS中产生强大的面内各向异性电子和光学特性。[49–51] BPNSS显示了从0.3 eV(bulk bp)到2.0 eV(单层)的厚度依赖性直接带盖的广泛范围。它们的光学响应由激子主导,在几百meV范围内表现出结合能。[52,53]更重要的是,单层BP具有1000 cm 2 v-1 s-1的电荷载体迁移率,而在野外效应晶体管中,良好的ON/OFF ON/OFF比率为10 3-10 4。[54]由于这些令人兴奋的特性,BPNS在光催化,生物医学,能源存储和转换以及电子和光电设备中显示了潜在的应用。[55–61]但是,在环境条件下,BPNS的稳定性较差限制了其实际应用,这主要是因为在氧气和/或水存在下,磷原子化学降解为氧化磷。在不同的钝化策略中,通过共价或非共价方法(方案1)构建异质结构可以帮助获得具有各种架构和功能的基于BPN的异质结构。[62–66]到目前为止,已经证明了不同的方法,例如化学官能化[67-72]和金属氧化物或离子载体质层涂层[73-75],作为改善BPNS环境稳定性的有效方法。基于BPN的异质结构可以提供BPNS的大面积钝化,结合属性