III-V 胶体量子点 (CQD) 在红外光电探测中备受关注,CQD 合成和表面工程的最新发展提高了性能。本文研究了光电探测器的稳定性,发现锌离子从电荷传输层 (CTL) 扩散到 CQD 活性层会增加其中的陷阱密度,导致操作过程中性能快速且不可逆地下降。为了防止这种情况发生,本文在 CQD 和 ZnO 层之间引入了有机阻挡层;但这会对设备性能产生负面影响。然后,该设备允许使用 C60:BCP 作为顶部电子传输层 (ETL) 以获得良好的形态和工艺兼容性,并选择 NiO X 作为底部空穴传输层 (HTL)。第一轮基于 NiO X 的设备表现出高效的光响应,但由于针孔而存在高漏电流和低开路电压 (Voc)。本研究将聚[双(4-苯基)(2,4,6-三甲基苯基)胺] (PTAA) 与 NiO X NC 结合形成混合 HTL,这种添加可减少针孔形成、界面陷阱密度和双分子复合,从而增强载流子收集。光电探测器在施加 1 V 偏压时在 970 nm 处实现 53% 的外部量子效率 (EQE),并且在连续照明操作 19 小时后仍保持 95% 的初始性能。光电探测器在货架储存 80 天后仍保持 80% 以上的性能。
已知金属卤化物钙钛矿材料中的固有离子迁移可引起基于偏置应用时这些化合物的X和𝜸射线检测器中有害且高度不稳定的深色电流。深色电流随着时间的流逝而缓慢漂移被确定为满足工业需求的这些设备的主要缺点之一。因为暗电流建立可检测性极限,电流演化和最终生长可能会掩盖通过传入的X射线光子产生的光电流信号。检测器评估的相关信息是离子相关参数,例如离子浓度,离子迁移率和离子空间充电区,这些区域最终在检测器偏置的外部接触附近建立。使用单晶和微晶毫米 - 毫米 - 甲基铵铅溴化物,允许在μ离子≈10-7cm 2 v - 1 s-1 s-ion univers outiation in I In ion umiention in I I Onion In ion In I IM ion umigiation 之后,使用单晶和微晶毫米 - 甲基铵铅溴化物,然后使用单晶和微晶毫米 - 甲基铵铅溴化物进行。钙钛矿结晶度。之后,使用单晶和微晶毫米 - 甲基铵铅溴化物,然后使用单晶和微晶毫米 - 甲基铵铅溴化物进行。钙钛矿结晶度。。钙钛矿结晶度。
III-V胶体量子点(CQD)在红外光检测中引起了人们的关注,CQDS合成和表面工程的最新发展提高了性能。在这里,这项工作调查了光电探测器的稳定性,发现从电荷传输层(CTL)到CQDS活性层的锌离子的差异会增加其中的陷阱密度,从而导致操作过程中快速且不可逆转的性能损失。在防止这种情况下,这项工作引入了CQD和ZnO层之间的有机阻塞层。但是这些对设备性能产生了负面影响。然后,该设备可以使用C60:BCP作为顶部电子传输层(ETL),以实现良好的形态和过程兼容性,并选择NiO X作为底部孔传输层(HTL)。基于Nio X的第一轮设备显示出有效的光响应,但由于针孔引起的高泄漏电流和低敞开电路(VOC)。这项工作介绍了Poly [Bis(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)(PTAA),它使用Nio X NC形成杂种HTL,这是一种减少针孔形成,界面陷阱密度,界面陷阱密度和双肌发射重组,增强载体,增强的载体。在1 V施加偏置的970 nm处,光电探测器在970 nm处实现53%的外部量子效率(EQE),并且在连续照明操作的19小时后,它们保持了95%的初始性能的95%。光电电视机在80天的架子存储后保留了80%以上的性能。
然而,在光电设备中,PB对应物的高性能,最近的努力,尤其是在CS 2 Agbibr 6双PSK上,[2]证明了它们在太阳能电池的广泛应用中的强大用途,[3-9] [3-9]光探测器,[10,11] x射线检测器,[10,11] X射线检测器[12] memristors [13] Memristors [13] 13]。[14] Moreover, when passing from the 3D double PSK toward its layered counterparts with two (2L) or one (1L) octahedra layers by introducing large A-site organic cations, such as butylam- monium (BA) or propylammonium (PA), allowed to develop new two-dimensional (2D) materials with tunable optoelec- tronic properties, such as the character of the bandgap as well as带隙的能量从≈2eV到≈3eV,这与无机晶格的失真有关。[15–19]尺寸还原也明显提高了候选人的ON/OFF比率,从10 2(CS 2 Ag-Birb 6至3d)到10 7(((Ba)2 Csagbibr 7),因为在扭曲的晶体结构中,离子迁移受到离子迁移的青睐。[20]从(Ba)2 Csagbibr 7中获得了具有较大迁移率的产物的X射线光绘制器,其中敏感性取决于晶体的尺寸(八面体层的数量)。[21,22]光电探测器的时间响应可以通过尺寸减小来增强,同时保持相似的检测率; [23]
金属卤化物钙钛矿已成为光电学中改变游戏规则的半导体材料。作为一种有效的微型/纳米制造技术,直接激光写作(DLW)已广泛用于佩洛维斯基特(Perovskites)制造模式,微/纳米结构和像素阵列,以促进其光电的应用。由于钙钛矿的独特离子特性和柔软的晶格,DLW可以引入丰富的光 - 单词相互作用,包括激光消融,结晶,离子迁移,相位分离,光反应和其他过渡,从而启用了植物性质的多样性功能。基于它们的图案结构,钙棍蛋白酶在显示器,光学信息加密,太阳能电池,发光二极管,激光器,光电探测器和平面透镜中都有许多应用,在本综述中对此进行了全面讨论。最后,我们讨论了这个迷人领域的未来发展必须解决的挑战。
回忆录是一种神经形态电子产品的基石,通过改变其跨州的电阻,对电刺激的历史做出反应。最近努力致力于发展对光激发的类似响应。在这里,我们意识到了一种新型的隧道照相仪表,其行为是双峰的:它的阻力取决于双重电光历史。这是在最终简单的设备中获得的:高温超导体和透明的半导体之间的界面。被剥削的机制是两种材料之间可逆的纳米氧化还原反应,其氧含量可以确定界面上的电子隧道速率。氧化还原反应是通过电化学,光伏效应和光合辅助离子迁移之间的相互作用来光学驱动的。除了其基本利益外,揭幕的电形记忆效应具有巨大的技术潜力。尤其是与高温超导性结合使用,除了促进低衰减连接外,还为超导电子产品带来了光征效应。
目前,由于钝化方法不完善,载流子复合限制了钙钛矿太阳能电池 (PSC) 的全部潜力。本文量化了由于界面能量偏移和缺陷导致的复合损失机制。结果表明,有利的能量偏移可以减少少数载流子并比化学钝化更有效地抑制界面复合损失。为了获得高效率的 PSC,2D 钙钛矿是有希望的候选材料,它具有强大的场效应,并且只需要在界面处进行适度的化学钝化。 2D/3D 异质结 PSC 的增强钝化和载流子提取功能使其小尺寸器件的功率转换效率提高到 25.32%(经认证为 25.04%),大面积模块(指定面积为 29.0 cm 2)的功率转换效率提高到 21.48%。2D/3D 异质结还抑制了离子迁移,因此未封装的小尺寸器件在最大功率点连续运行 2000 小时后仍能保持其初始效率的 90%。
现有的发光成像技术通常使用单色摄像机来捕获空间分辨的强度信息。光谱信息需要光谱测量,通常缺乏空间分辨率,或者需要在整个测量区域进行扫描,需要长时间的测量持续时间(分钟或小时)。半导体材料,例如钙钛矿,可以用商用颜色摄像机来表征。在这项工作中,建立和研究了使用改良的商业颜色DSLR相机的增强发光成像设置,以同时在几秒钟内同时获得波长和强度信息。这可以补充现有的特征技术。波长估计。还进行了几个钙钛矿太阳能电池和薄膜样品的光致发光和电致发光成像。该技术被发现可以合理估计窄光谱发射(例如激光器)的波长,并且能够在空间和时间上显示波长的相对变化,以获得更广泛的光谱发射。这种具有成本效益的伪 - 光谱成像技术适用于由于降解和离子迁移而导致时变特性的钙钛矿。
纳米结构的氧化锆和黄金膜(NS-AU/ZRO X)已被证明为具有非线性和滞后电气行为的特征,具有短期记忆和增强/抑郁活性。在这里,我们研究了调节纳米结构双层Au/Zro X膜的非线性行为的传导机制。尤其是,我们遵循Chua对综合系统的方法进行了研究,并分别对膜中的离子迁移和电子传输进行了建模。双层纳米结构系统所表现出的传导机制受到纳米形态的强烈影响,纳米形态由于电刺激而动态变化。沿微观结构中的瓶颈和边缘沿着强烈的本地电场和高迁移率促进了结构重排。电子传输是电极界面处的Schottky屏障和块状纳米材料中的Poole-Frenkel效应。在这里讨论了Poole-Frenkel效应的模型,以在高应用场机制中包括库仑陷阱的饱和;提出的模型已通过具有不同的扫描速度和不同温度(从300至200 K)的实验电压坡道进行了验证,以及功率指数参数分析。