线粒体参与了多个细胞任务,例如ATP合成,代谢,代谢和离子转运,细胞凋亡的调节,线粒体DNA的发病,信号传导和遗传。线粒体的大多数正确功能基于大型电化学质子梯度,其成分(其内部线粒体膜电位)严格由通过线粒体内置的离子转运来控制。因此,线粒体功能严重取决于离子稳态,其干扰导致细胞功能异常。因此,发现通过膜影响离子通透性的线粒体离子通道定义了离子通道在不同细胞类型中的功能的新维度,这主要与线粒体离子通道在细胞生命和死亡中执行的重要任务有关。本综述总结了对动物线粒体离子通道的研究,特别关注其生物物理特性,分子身份和调节。此外,简要讨论了线粒体离子通道作为几种疾病的治疗靶标的潜力。
循环肿瘤DNA(CTDNA)敏感性仍然是膀胱癌患者分子残留疾病(MRD)检测的敏感性。为了解决这个问题,我们专注于最靠近该疾病,尿液和分析的尿液肿瘤DNA的生物流体。我们通过深层测序(UCAPP-SEQ)将超低通的整个基因组测序(ULP-WGS)与尿癌个性化的亲填充(ULP-WGS)整合在一起,以实现敏感的MRD检测并预测总体存活。变体等位基因频率,推断的肿瘤突变负担和无尿细胞DNA(CFDNA)的拷贝数衍生肿瘤分数水平的明显预测的病理完全反应状态,远胜于血浆CTDNA的能力。将这些尿液CFDNA衍生的因子具有带有一口输出的交叉验证的随机森林模型,对于预测有关金标准手术病理学的残留疾病的敏感性为87%。Kaplan - Meier分析该模型的患者具有MRD,这是通过COX回归分析证实的。对肌肉侵入性,新辅助化疗和持有验证亚组进行的其他生存分析证实了这些发现。总而言之,我们促进了来自74例局部膀胱癌患者的尿液样本,并使用尿液CFDNA多词敏感地检测MRD并准确预测生存率。
离子通道编码基因的错义变异与一系列严重疾病有关。变异对生物物理功能的影响与临床特征相关,可归类为功能获得或丧失。这些信息有助于及时诊断、精准治疗和指导预后。功能表征是转化医学的一个瓶颈。机器学习模型可能能够通过预测变异的功能效应来快速生成支持证据。在这里,我们描述了一个多任务多核学习框架,该框架能够将功能结果和结构信息与临床表型相协调。这种新方法将人类表型本体扩展到基于核的监督机器学习。我们的功能获得或丧失分类器实现了高性能(平均准确度 0.853 SD 0.016,平均 AU-ROC 0.912 SD 0.025),优于传统基线方法和最先进的方法。性能在不同的表型相似性测量中都很稳定,并且对表型噪声或稀疏性基本不敏感。局部多核学习通过突出显示具有隐含基因型-表型相关性或潜在任务相似性的通道以供下游分析,提供了生物学洞察力和可解释性。
• First degree relatives are defined as a blood relative with whom the individual shares approximately 50% of his/her genes, including parents, full-siblings, and children on both maternal and paternal sides • Second degree relatives are defined as a blood relative with whom an individual shares approximately 25% of his/her genes, including grandparents, grandchildren, uncles, aunts, nieces, nephews, and half-siblings • Third degree relatives被定义为血亲戚,一个人与该亲戚共享其基因的约12.5%,包括第一家伙,曾祖父母或曾孙基因测试,应由基因检测和/或心脏离子离子通道病的专家进行。确定长QT综合征(LQT)的预测试概率未标准化。LQT的患者的一个例子是Schwartz评分为2或3的患者。暗示布鲁加达综合征(BRS)的体征和症状包括具有特征性心电图模式,记录在45岁以下的家庭成员中的心室心律失常(SCD),在家庭成员中的特征性心电图模式,在家庭成员中,可诱导的心血网心血网上的电力性心脏病学研究,或对电力性研究。预计具有可疑QT综合征(SQT)的索引患者将缩短(低于平均值较低的标准偏差[SD])速率较短的缩短QT间隔(QTC)。男性低于350毫秒的截止值,女性的360毫秒来自人口正常值(Tristani-Firouzi,2014年)。仅存在短QTC间隔不会使SQT诊断。临床病史,家族史,其他心电图检查结果和基因检测可用于确认诊断。一般测试策略,对疑似先天性LQT,儿茶酚胺能多态性心脏心动过速(CPVT)的患者进行测试,或者如果已经鉴定出来,应从已知的家族变体开始测试。如果无法获得家庭成员的遗传诊断,则可以通过单基因测试或面板测试进行测试。在加利福尼亚医疗政策的蓝盾:评估遗传面板实用性的一般方法中,概述了面板测试的临床实用性的评估。心脏离子通道病的面板是诊断测试面板,可能属于几个类别之一:包含单个疾病的变体的面板;包括
摘要囊性纤维化跨膜电导调节剂(CFTR)阴离子通道和上皮Na +通道(ENAC)在许多上皮组织中在跨层离子和流体转运中起着重要作用。两个通道的抑制剂都是在体外定义其生理作用的重要工具。然而,两个常用的CFTR抑制剂CFTR INH -172和GLYH-101(也抑制非CFTR阴离子通道),表明它们不是CFTR的特异性。然而,迄今为止,这些抑制剂对上皮阳离子通道的潜在靶向效应尚未解决。在这里,我们表明,两个CFTR阻滞剂都以许多研究人员的常规使用浓度造成了对商店经营的钙进入(SOCE)的显着抑制,这些钙进入(SOCE)是时间依赖性,可逆的,并且独立于CFTR。斑块夹的实验表明,CFTR INH -172和GLYH-101都引起了ORAI1介导的全细胞电流的显着块,确定它们可能通过调制该Ca 2+释放激活的Ca 2+(CRAC)通道来减少SOCE。除了对钙通道的脱靶影响外,两种抑制剂在异武卵母细胞异源表达后都显着降低了人αβγ-ENAC介导的电流,但对Δβ-ENAC功能的影响有所不同。分子对接确定了两个CFTR阻滞剂的ENAC细胞外域中的两个假定结合位点。一起,我们的结果表明,在使用这两个CFTR抑制剂来剖析CFTR和潜在的ENAC在生理过程中的作用时,需要谨慎。
标题:开发针对孤儿癌或神经发育障碍的离子通道和转运蛋白上新分子开发和电生理验证的微型技术。pi和实验室的名称:Marco Lolicato and Elements S.R.L.研究主题/主题:生物物理学,工程,化学和分子生物学。主要摘要:博士生将通过实验室活动,临时研讨会和参与国会,转化医学的互补领域的技能,特别关注跨膜治疗目标的分子和功能方面,例如离子渠道和转移剂。通过与公司元素S.R.L.的合作,学生还将发展对微电子和电生理学的深入了解,这将使他在行业和学术领域的就业市场中具有竞争力。实验室主要用于涉及肿瘤病理和神经发育过程的离子通道和转运蛋白的生物物理学。实验室的目的是鉴定HV1通道在乳腺癌转移中的作用(1); (2)KCC2通道相互作用组的分子机制; (3)二价VDAC1-己激酶复合物的分子结构。在实验室中,我们能够为结构和功能研究净化足够数量的蛋白质靶标,并且我们正在与国际公司积极合作开发新的抗癌分子。学生的进度将由实验室经理和工业导师不断监控。博士生将通过学习分子生物学和生化技术来进入这种情况,这将使他能够产生感兴趣的蛋白质,并获取必要的技能,以独立和无监督的电生理测量测量,以评估分子对纯化蛋白质的影响。博士生将学会评估蛋白质制备的质量并分析和解释电生理学数据。实验室进度报告将每周组织,并每月与公司经理举行虚拟会议。博士生还将在实验室和高通量电生理系统组成部分的电子设备中获得“故障排除”的经验。该项目具有很高的创新性和竞争性,因为它将实验室研究与用于电生理测量的微电源成分的开发相结合。实际上,目标是通过彻底筛选已经可用的化合物的商业分子库和库来鉴定抗肿瘤和神经发育分子,但已批准用于治疗不同的病理学(药物重新培养 /重新定位)。这些类型的筛选需要大量的实验和电生理测量。但是,由于Elements Company开发的工具并由博士生优化 /开发的工具,可以快速测试每天数十个分子。技术:电生理学,蛋白质表达和纯化,细胞生物学测定,计算方法(对接,分子动力学,蛋白质工程)。这种方法论方法的发展不仅对实验室和帕维亚大学都有用,而且最重要的是,对于国家和国际科学界而言,这是有用的。
摘要:离子通道和转运蛋白通常由在各种生理和病理过程中发挥关键作用的生物分子组成。传统疗法包括许多离子通道阻滞剂和一些激活剂,尽管调节离子稳态的确切生化途径和机制尚未完全阐明。生物医学中一个具有巨大创新潜力的新兴研究领域涉及合成离子通道和转运蛋白的设计和开发,这可能提供未开发的治疗机会。然而,在这个具有挑战性和多学科的领域中的大多数研究仍然处于基础水平。在这篇综述中,我们讨论了过去五年在离子通道和转运蛋白方面取得的进展,涉及与生物用途相关的生物分子和合成超分子。我们最后确定了未来探索的治疗机会。
摘要:离子通道和 G 蛋白偶联受体 (GPCR) 的突变并不少见,可导致心血管疾病。鉴于先前报道的与高突变率相关的多种因素,我们根据 (i) 靠近端粒和/或 (ii) 高腺嘌呤和胸腺嘧啶 (A+T) 含量对多个人类基因的相对易变性进行了排序。我们使用基因组数据查看器提取基因组信息,并根据与因素 (i) 和 (ii) 的关联检查了 118 个离子通道和 143 个 GPCR 基因的易变性。然后,我们用 31 个编码离子通道或 GPCR 的基因评估了这两个因素,这些基因是美国食品药品管理局 (FDA) 批准的药物所针对的。在所研究的 118 个离子通道基因中,80 个符合因素 (i) 或 (ii),匹配率为 68%。相比之下,143 个 GPCR 基因的匹配率为 78%。我们还发现,FDA 批准药物靶向的 GPCR 基因(n = 20)的突变性相对低于编码离子通道的基因(n = 11),而编码 GPCR 的靶基因长度较短。本研究结果表明,使用因子药物基因组的匹配率分析来系统地比较 GPCR 和离子通道的相对突变性是可行的。通过两个因子对染色体的分析确定了 GPCR 的一个独特特性,它们的核苷酸大小与端粒的接近程度之间存在显着关系,这与大多数易患人类疾病的基因位点不同。
1药房,有机化学系,位于Bydgoszcz的Ludwik Rydygier Collegium Medicum,Toru´n的Nicolaus Copernicus University,波兰87-100; magda.kowalska@doktorant.umk.pl(M.K。); l。finfifjalkowski@cm.umk.pl(。)2药物学系,Jagiellonian大学医学院药物学主席,波兰Krakow 30-688 Medyczna St. 9; monika.kubacka@uj.edu.pl(M.K。); kinga.salat@uj.edu.pl(K.S.)3尼古拉斯·哥白尼大学Bydgoszcz卫生科学学院心脏病学和临床药理学系,75 Ujejskiego St.,85-168 Bydgoszcz,波兰; g.grzesk@cm.umk.pl 4 4 Gagarina St. Nicolaus Copernicus大学化学学院聚合物的物理化学和化学化学,波兰87-100 Toru´n; jacek.nowaczyk@umk.pl *通信:alicja@cm.umk.pl
乳腺癌的诊断和治疗水平逐年改善,5年的存活率达到90%(7)。乳腺癌的全身治疗最初形成了一个成熟的系统,包括化学疗法,内分泌治疗,靶向疗法和免疫疗法。化疗仍然是乳腺癌全身治疗的主要方法,但是化学疗法具有严重的不良反应,并且容易受到耐药性。现有数据表明,几种细胞内蛋白在乳腺癌细胞中异常表达,并已作为治疗乳腺癌的治疗靶标,例如人表皮生长因子受体2(HER2),环氧氧合酶-2(COX-2)(COX-2),表皮生长因子受体(EGFR),血管源性生长因子(VEVAILIALILIALILIALILIALILIAL(VEVEL)(VEVER)(vevarffffffffffffffffffffffffffffffff)(vevarff)(8-1)因此,针对这些蛋白质的靶向药物已被设计并发现特定于某些类型的乳腺癌,尤其是在HER2阳性乳腺癌阳性的患者中,有针对性的治疗效果很好。免疫疗法也在治疗三重阴性乳腺癌方面取得了进展,III期临床研究130表明,免疫疗法在三层阴性乳腺癌的一线治疗中有效(13),