摘要 随着气候危机的加剧,制冷系统引起了越来越多的研究关注。太阳能制冷是最成熟的可行解决方案之一,因为必要的冷却能量是通过利用可用的太阳辐射产生的。吸收式制冷机利用太阳热能产生冷却能量,由驱动热源(如太阳能)提供冷却能量以产生冷却功率。现有文献主要介绍小型系统(小于 50 kW c )的案例研究和模拟。所介绍的案例研究调查了单效 316 kW c 吸收式制冷机在不同可再生能源驱动热源场景(太阳能驱动、生物质驱动和混合方法)下的性能。结果表明,与生物质或太阳能作为唯一热源的场景相比,联合热发电(太阳能场和生物质锅炉串联)的性能明显更优。此外,吸收式制冷机的经济指标似乎比同容量的离心式电制冷机更具吸引力,因为投资回收期显著缩短。净现值 (NPV – 与离心式电制冷机相比,吸收式制冷机高出 75% 以上) 和投资回报率 (ROI) 值在吸收式制冷机方案中有所增加 (18.03% 对比离心式电制冷机的 15.24%)。本文描述的系统在东马其顿和希腊色雷斯运行,是最大的自给自足能源社区之一的一部分。所提出的案例研究是首次尝试对在当地能源社区运行的大型 (超过 250 kW c ) 冷却系统进行性能评估。
2006 年,牛津街工厂的五台电动离心式冷水机组中有两台被更高效的新型中压变频冷水机组取代。这些新型冷水机组性能卓越,使工厂能耗降低了约 18%(360 万千瓦时),相当于减少了约 470 万磅的二氧化碳排放量,并消除了大量消耗臭氧层的氟利昂。
1928 年,皇家空军学院克兰威尔分校的学员弗兰克·惠特尔正式向上级提交了涡轮喷气发动机的构想。1929 年 10 月,他进一步发展了自己的构想。1930 年 1 月 16 日,惠特尔在英国提交了他的第一项专利(1932 年获得批准)。该专利展示了一种两级轴流式压缩机,为单侧离心式压缩机供气。实用的轴流式压缩机是由 AAGriffith 在 1926 年的一篇开创性论文(“涡轮设计的空气动力学理论”)中提出的构想实现的。惠特尔后来只专注于更简单的离心式压缩机,原因有很多。惠特尔的第一台发动机于 1937 年 4 月启动。它是液体燃料,并包括一个独立的燃油泵。惠特尔的团队几乎惊慌失措,因为发动机无法停止,甚至在燃料关闭后仍在加速。原来,燃料漏入发动机并积聚成池,因此发动机只有在所有泄漏的燃料燃烧完后才会停止。惠特尔无法引起政府对他的发明的兴趣,因此开发工作进展缓慢。
自从半个多世纪前第一台压缩机出厂以来,FS-Elliott 的控制系统就一直是我们设备包的基本组成部分。我们的数千个控制系统在全球各地的设施中以卓越的水平运行。正是这种令人难以置信的丰富经验使 FS-Elliott 赢得了离心式压缩机可靠控制技术首要供应商的声誉。如今,每台 FS-Elliott 空气压缩机的核心都是我们先进的 REGULUS ® 控制系统之一。借助这种易于使用、功能多样的系统,工厂操作员能够控制工厂最高的运营费用之一 - 能源成本。REGULUS ® 操作系统的卓越压力控制能力可实现节约,从而消除过多的空气排放到大气中,同时有效响应设施不断变化的空气需求。
高度可靠的 Elliott 轴流式压缩机非常适合高流量、中压应用,超出了离心式压缩机设计的流量容量。轴流式压缩机的典型应用是为流化催化裂化 (FCC) 工艺、合成烟气处理、空气动力学测试、高炉应用空气提供燃烧空气,并广泛用于空气分离和硝酸厂。轴流式压缩机在广泛的运行范围内具有高效率水平,可显著节省能源。
的推力来自单级、宽弦、无阻尼、高效、插入式叶片风扇转子,该转子由非冷却三级低压涡轮 (LPT) 直接驱动。发动机压缩机核心包括四个轴向压缩机“整体叶片盘”,带有两级变量和三级非变量轴向叶片;以及单级离心式压缩机。轴向和离心式压缩机转子由两级冷却高压 (HP) 涡轮 (HPT) 驱动。HP 和 LP 轴以相同方向旋转。整个旋转系统由轴承和密封系统支撑,该系统仅包含两个油底壳区域,均位于凉爽环境中(即燃烧室下方没有油底壳)。燃烧室为通流、环形、扩散冷却配置。为了降低噪音和提高效率,使用强制混合器将风扇旁路和核心流合并在一起,然后通过嵌入在推力反向器中的收敛-发散喷嘴离开发动机。发动机包括全权限数字电子控制 (FADEC) 系统,该系统以两个独立电子控制单元 (ECU) 的形式提供双通道电子控制;客户引气系统,为飞机提供两个引气源;以及附件变速箱 (AGB),旨在满足机身对发电机和液压泵等附件的需求。HTF7000 发动机的设计方法
蒸发器部分:蒸发器电机和鼓风机叶轮安装在滑出式、易于拆卸的电机板上。鼓风机叶轮为金属双入口、前向弯曲离心式,由三速 PSC 电机直接驱动,内置自动复位过载保护器。蒸发器部分包含一个整体镀锌钢冷凝盘,内衬一个额外的模制和粉末涂层钢排水盘,排水到两个独立的最小 3/4 英寸内径 PVC 排水软管中。
亚太地区拥有世界五分之三的人口,其产出已占全球总产出的近一半。到 2050 年,在经历了两个世纪的曲折和几次疫情之后,亚太地区可能再次成为一股离心式的经济和社会力量。本书列出了政策制定者在迈向新亚太世纪时可以考虑的选项,在这个世纪中,经济实力是必要的,但仅靠经济实力是不够的,因为包容性、韧性和可持续性——曾经被视为道德选择——已成为地球未来的必要条件。斯瓦尼姆·瓦格莱 (Swarnim Waglé) 是联合国开发计划署亚太地区局的首席经济顾问。
Boyce 博士是多部书籍的作者,例如《燃气轮机工程手册》(第三版,Elsevier)、《热电联产和联合循环发电厂手册》(第二版,ASME Press)和《离心式压缩机基础指南》(PennWell Books)。他是《佩里化学工程手册》第七版和第八版(McGraw Hill)在流体运输和储存以及燃气轮机领域的主要贡献者。Boyce 博士在世界各地教授了 150 多门短期课程,参加者超过 300 家公司的 3000 名学生。他是 ASME PTC 55 飞机燃气轮机委员会(负责飞机燃气轮机测试)主席、ASME 道德审查委员会成员,曾任 ASME 以下部门的主席:工厂工程和维护、会议委员会和电力公用事业委员会。
R™ 系列螺旋旋转压缩机 • 无与伦比的可靠性。下一代 Trane 螺旋旋转压缩机的设计、制造和测试均遵循与 Trane 涡旋压缩机、离心式压缩机和上一代螺旋旋转压缩机相同的严格和坚固标准,这些压缩机已在风冷式和水冷式冷水机组中使用超过 15 年。• 多年的研究和测试。Trane 螺旋旋转压缩机已经积累了数千小时的测试,其中大部分是在超出正常商用空调应用的恶劣工作条件下进行的。• 经过验证的记录。Trane 公司是世界上最大的制冷用大型螺旋旋转压缩机制造商。全球超过 300,000 台压缩机已证明,特灵螺旋旋转压缩机在运行第一年内的可靠性率超过 99.5% - 业内无可比拟。• 抗液击。R 系列压缩机的坚固设计可以吸收大量液体制冷剂,而这些液体制冷剂通常会严重损坏往复式压缩机的阀门、活塞杆和气缸。• 更少的运动部件。螺旋旋转压缩机只有两个旋转部件:阳转子和阴转子。与往复式压缩机不同,特灵螺旋旋转压缩机没有活塞、连杆、吸入和排出阀或机械油泵。事实上,典型的往复式压缩机的关键部件数量是 R 系列压缩机的 15 倍。移动部件越少,可靠性越高,使用寿命越长。