本文介绍了一种解决离散优化 NP 难问题的新方法,该方法适用于实现硬件量子退火的量子处理器 (QPU,Quantum Processor Unit) 的架构。该方法基于在精确分支定界算法中使用量子退火元启发式算法来计算目标函数的下限和上限。为了确定下限,使用了一种定义对偶问题 (广义离散背包问题) 的拉格朗日函数的新方法,其值在量子机的 QPU 上计算。反过来,为了确定上限,我们以带约束的二元二次规划形式制定了适当的任务。尽管量子机生成的结果是概率性的,但本文提出的混合算法构建方法交替使用 CPU 和 QPU,保证了最佳解决方案。作为案例研究,我们考虑 NP 难单机调度问题,最小化延迟作业的加权数量。进行的计算实验表明,在解决方案树的根部已经获得了最优解,并且下限和上限的值仅相差百分之几。
缩写:Acpype,Antchamber Python Parser界面;助理,吸收,分布,代谢,排泄和毒性; ATP,三磷酸腺苷; cAMP,环状AMP,腺苷3',5' - 环状单磷酸盐; DCCM,动态交叉相关矩阵;涂料,离散优化的蛋白质能; DSSP,定义蛋白质的二级结构;美国食品和药物管理局FDA; FEL,自由能景观; GTP,三磷酸鸟嘌呤; Lincs,线性约束求解器; MD,分子动力学; mmpbsa,分子力学泊松 - 玻尔兹曼表面积; NPT,恒定数量的颗粒,系统压力和温度; NVT,恒定颗粒数,系统体积和温度; PCA,主成分分析; PDB,蛋白质数据库; PI,无机磷酸盐; PME,粒子网埃瓦尔德; PPA1,无机焦磷酸酶1; PPI,无机焦磷酸盐; RG,回旋半径; RMSD,均方根偏差; RMSF,根平方波动; SEM,平均值的标准误差;微笑,简化的分子输入线进入系统。
量子退火器是量子计算的替代方法,它利用绝热定理有效地找到了可实现的哈密顿量的基态。此类设备当前可商购,并已成功应用于多个组合和离散优化问题。然而,由于难以将分子系统映射到伊辛模型汉密尔 - 汉密斯尼亚人,因此将量子试剂应用于化学问题仍然是一个相对稀疏的研究领域。在本文中,我们回顾了使用基于ISING模型的量子退火器找到分子哈密顿量的基础状态的两种不同的方法。另外,我们通过计算H + 3和H 2 O分子的结合能,键长和键角并映射其势能曲线的相对有效性。我们还通过确定使用各种参数值模拟每个分子所需的量子数和计算时间来评估每种方法的资源要求。虽然这些方法中的每一种都能够准确预测小分子的基态特性,但我们发现它们仍然超过现代经典算法的表现,并且资源需求的扩展仍然是一个挑战。
算法,该算法根据飞行目的地、跑道角度、机场附近飞机的空间间隔、人口分布和转向运动来考虑引导点。高度路径针对低感知噪音和低燃料消耗进行了优化,这是通过使用从该表面路径计算出的距离求解飞行纵向控制运动方程来确定的。开发了一种改进的非支配排序遗传算法 II 用于离散优化,以减少计算工作量获得最佳高度路径的帕累托前沿。通过模拟从香港国际机场飞往两个强制空中交通服务报告点的航班来演示该方法。然后将结果与快速访问记录器数据和标准仪表离场 (SID) 轨迹进行比较。虽然该方法没有考虑影响离场路径规划的某些航空运输因素,例如天气模式和空中交通组合,但得到的地面路径与 SID 轨迹非常相似。高度路径的帕累托前沿表现出燃料消耗和感知噪音水平的降低。我们还根据不同航线的相关飞行物理原理,讨论了燃料消耗和感知噪音水平之间的权衡。
使用量子处理单元 (QPU) 有望加快解决计算问题的速度,尤其是离散优化问题。虽然已知一些突破性的算法方法可以证明其性能优于传统计算机,但我们观察到构建高效量子算法的编程抽象很少。解决与数据库管理相关的具体问题的文献中,很大一部分集中于将它们转化为二次无约束二进制优化问题 (QUBO),然后可以在基于门的机器(使用量子近似优化算法)或量子退火器上处理这些问题。影响这两种方法的效率和可扩展性的关键方面是如何将经典数据加载到量子位中,以及如何将问题编码为 QUBO 表示。众所周知,编码的有效性对于量子计算机至关重要,特别是在嘈杂的中型量子计算机时代,可用的量子比特数量受到严重限制。在本文中,我们介绍了三种编码模式,讨论了它们对可扩展性的影响以及它们的易用性。我们以娱乐性(但计算挑战性)数独问题及其简化为图形着色为例,讨论它们各自的优点和缺点。我们的目标是使数据库研究人员能够为他们的目的选择合适的编码方案,而无需深入了解量子特性,从而简化在数据管理系统上应用量子加速的途径。
动机:这是讲座系列中的一个小删减。我们不再关注顺序决策问题,而是转向存在许多耦合变量的问题。问题是找到与这些变量的耦合一致的值(或稍后的概率分布)。这是一个非常通用的问题设置,它适用于许多问题,而不仅仅是地图着色和数独。事实上,许多计算问题可以归结为约束满足问题或它们的概率类似物,即概率图模型。这还包括顺序决策问题,正如我在一些额外的讲座中提到的那样。此外,用于解决 CSP 的方法与离散优化非常密切相关。从我的角度来看,引入 CSP 的主要动机是作为引入其概率版本图模型的先行者。这些是机器学习、机器人技术、人工智能等领域中制定概率模型的核心语言。马尔可夫决策过程、隐马尔可夫模型以及我们在本讲座中无法讨论的许多其他问题设置都是图形模型的特殊情况。在 CSP 和图形模型这两种设置中,核心是理解进行推理的含义。树搜索、约束传播和信念传播是此上下文中最重要的方法。在本讲座中,我们首先定义 CSP 问题,然后介绍基本方法:使用一些启发式方法的顺序分配、回溯和约束传播。
摘要 —量子计算的出现为解决机组组合等组合复杂电力系统问题的方式带来了一场革命。由于间歇性可再生能源的渗透率呈上升趋势,预计未来机组组合问题的复杂性将会增加。尽管量子计算已被证明可有效解决大量问题,但它在电力系统问题中的应用却相当有限。本文创新性地提出了一种量子机组组合方法,并建立了分解与协调交替方向乘法(ADMM)的量子版本。上述目标是通过设计量子算法并利用量子比特的叠加和纠缠来解决子问题,然后通过 ADMM 协调这些子问题以获得可行解。本文的主要贡献包括:1)创新性地开发了机组组合的量子模型;2)开发了分解与协调支持的框架,为利用有限的量子资源潜在地解决大规模离散优化问题铺平了道路; 3)设计了新颖的量子分布式单元承诺(QDUC)来解决目前量子计算机能够解决的更大规模问题。将QDUC的结果与经典计算机的结果进行了比较,验证了量子计算的有效性。
由教授领导的团体独立提出了“数字”元结构的概念。Della Giovampaola和Engheta [1]和Cui等。[2]。基于这些类型的人工材料的基本思想是依赖有限数量的基本包裹物(在最极端的情况下,只有两种),但是能够设计各种复杂的局部操作的能力。每当适用时,这种方法会大大简化设计过程,因为可以通过离散优化策略有效地探索搜索空间[3]。此外,它简化了制造过程,还提高了相对于不可避免的公差的鲁棒性。指的是电磁(EM)跨表面场景[2],人们可能会想到一组反射元素,例如在接地的介电介电底物上放置的金属斑块,理想地是特征在于单位 - 振幅恢复的特征,并以180的量子响应和量化的量子响应,以量身定量的量子,以量身定量的范围,以量身定量的编码为量子。最简单的二进制外壳,在2位案例中,0°,90°,180°和270°,依此类推。以这种方式,这些元素的每个可能的空间组合可以用数字编码顺序进行等效。在某种程度上,这个概念也可以解释为对所谓的“ Checker-board”元面的概括,该概念具有金属和人工 - 磁性导管元件的定期分布[4]。
使用量子处理单元 (QPU) 有望加快解决计算问题的速度,尤其是离散优化。虽然已知有几种突破性的算法方法可以证明其性能优于传统计算机,但我们发现构建高效量子算法的编程抽象非常稀缺。解决与数据库管理相关的具体问题的文献中,很大一部分集中于将它们转化为二次无约束二进制优化问题 (QUBO),然后可以在基于门的机器(使用量子近似优化算法)或量子退火器上处理这些问题。影响这两种方法的效率和可扩展性的关键方面是如何将经典数据加载到量子位中,以及如何将问题编码为 QUBO 表示。众所周知,编码的有效性对量子计算机至关重要,尤其是在嘈杂的中型量子计算机时代,可用的量子位数受到极大限制。在本文中,我们介绍了三种编码模式,讨论了它们对可扩展性的影响以及它们的易用性。我们以娱乐性(但计算挑战性)数独问题及其简化为图形着色作为说明性示例,讨论它们各自的优点和缺点。我们的目标是使数据库研究人员能够为他们的目的选择合适的编码方案,而无需深入了解量子特性,从而简化在数据管理系统上应用量子加速的途径。
我们提出了量子信念传播 (QBP),一种基于量子退火 (QA) 的低密度奇偶校验 (LDPC) 错误控制码解码器设计,该解码器在 Wi-Fi、卫星通信、移动蜂窝系统和数据存储系统中得到了广泛应用。QBP 将 LDPC 解码简化为离散优化问题,然后将简化的设计嵌入到量子退火硬件中。QBP 的嵌入设计可以在具有 2,048 个量子比特的真实最先进的 QA 硬件上支持块长度高达 420 位的 LDPC 码。我们在真实的量子退火器硬件上评估性能,对各种参数设置进行敏感性分析。我们的设计在高斯噪声无线信道上在 SNR 9 dB 下实现了 20 µ s 内的 10 − 8 比特错误率和 50 µ s 内的 1,500 字节帧错误率 10 − 6。进一步的实验测量了在真实无线信道上的性能,需要 30 µ s 才能在 SNR 15-20 dB 下实现 1,500 字节 99.99% 的帧传输率。QBP 的性能优于基于 FPGA 的软信念传播 LDPC 解码器,在 SNR 低 2.5–3.5 dB 时达到 10 − 8 的误码率和 10 − 6 的帧错误率。就局限性而言,QBP 目前无法在当前的 QA 处理器上实现实用的协议大小(例如 Wi-Fi、WiMax)LDPC 码。我们在本工作中的进一步研究提出了未来成本、吞吐量和 QA 硬件趋势方面的考虑。