这项工作旨在作为先前主张的讨论中的声音,即基于变压器模型体系结构的验证大型语言模型(LLM)可能是一种陈述。已经对LAMDA模型提出了此类主张,也是关于LLM驱动的聊天机器人(例如Chatgpt)的当前浪潮的。如果确认,由于广泛使用类似模型,该主张将在自然语言处理(NLP)社区中产生严重的影响。但是,在这里,我们认为这样的大语言模型无法意识到,尤其是LAMDA比其他类似的模型没有任何进步。我们通过通过综合信息理论分析变压器架构来证明这一点。我们将感性的主张视为在NLP报告中使用拟人化语言的更广泛倾向的一部分。不管主张的真实性如何,我们认为这是一个合适的时机,可以盘点语言建模的进步并考虑任务的道德含义。为了使这项工作对NLP社区以外的读者有所帮助,我们还提出了语言建模的必要背景。
使用植物提取物(例如Ocimum Basilicum L.(OBL)种子)的绿色合成,由于其可持续和环保的性质引起了人们的关注。在这项研究中,使用OBL种子提取物在500°C和600°C的两个不同的钙化温度下使用OBL种子提取物合成Zno-MGO-MN 2 O 3纳米复合材料,并根据光催化施用和细胞毒性进行评估。植物化学物质充当生产路线中的减少和掩盖剂,从而导致具有独特特性的纳米材料形成。表征技术,包括XRD,FE-SEM和DRS,用于分析纳米复合材料的结构,形态和光学特征。XRD结果证实,晶体尺寸从〜32 nm(500°C)增加到〜84 nm(600°C)。另外,Fe-Sem图像显示出不规则形状的纳米复合材料的形成,样品的EDX光谱证实了锌,镁,锰和氧元素的存在。研究了不同有机污染物的纳米复合材料的光催化行为。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。 此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。
摘要:种子质量是物种繁殖的重要特征。在这种情况下,Cenostigma pyramidalis 对于恢复退化地区具有重要特性。然而,由于它生长在卡廷加,这种物种更容易受到植物病原体的感染。因此,在种植前后处理其种子以防止真菌的发生非常重要。这些替代方法之一是使用硅,它有助于提高活力和控制疾病。在这种情况下,目标是评估不同来源的硅在控制与 C. pyramidalis 种子相关的天然真菌及其生理质量方面的作用。实验在巴西帕拉伊巴联邦大学阿雷亚校区 II 的植物病理学实验室进行。种子在经过划痕处理以克服休眠后,用以下物质处理:T1 - 对照;T2 - Captana,T3 - Agrosilício plus®;T4 - Rocksil®;T5 - Sifol®; T6 - Chelal®;T7 - Bugram®。实验采用完全随机设计。对种子进行卫生、发芽和出苗测试。发芽和出苗测试中,每个处理使用 100 粒种子,重复 4 次,每次 25 粒种子;健康测试中,每个处理使用 10 次,每次 10 粒种子。所有硅源均能有效控制 C. pyramidalis 种子中的曲霉菌、枝孢菌和青霉菌。建议使用 Sifol® 进行处理,以控制真菌的发生率,而不会影响种子的生理质量。
种子是可持续农业最基本、最关键的投入。在印度,农业是经济的支柱,种子行业在确保该国 14 亿人的粮食和营养安全方面发挥着至关重要的作用。所有其他投入的响应在很大程度上取决于用于种植的种子和种植材料的质量。据估计,仅优质种子对总产量的直接贡献就约为 15-20%,具体取决于作物,如果有效管理其他投入,这一比例可进一步提高到 45%。印度东部和东北部的种子状况反映了独特的区域挑战和主要作物(如水稻、玉米、油籽和蔬菜)的资源分配。阿萨姆邦、西孟加拉邦和奥里萨邦是印度东部的主要稻米产地,而东北部各邦则专注于稻米和玉米,尽管小规模种植油籽和豆类也很普遍。由于农业气候条件良好、政府支持以及对高价值作物的日益重视,印度东部和东北部的园艺业取得了长足发展。该地区非常适合种植各种园艺作物,包括芒果、菠萝、香蕉、菠萝蜜和橙子等水果,以及黑胡椒、姜黄和小豆蔻等香料、药用植物、茶叶、椰子和竹子。近年来,在政府旨在提高种子质量和供应量的举措的支持下,印度东北部的田间和园艺作物种子分销量逐渐增加。数据显示,印度约 17% 的水稻种子需求来自该地区。此外,国家油籽和油棕使命越来越多地支持豆类和油籽,以提高自给自足能力。东部和东北地区受益于更广泛地推广高产品种和认证种子,以提高整体生产弹性。
1个地球科学研究所,斯洛伐克科学学院,84005布拉迪斯拉瓦,斯洛伐克2号,伊利诺伊州芝加哥大学芝加哥大学地球物理科学系,伊利诺伊州60637,美国3号,美国内布拉斯加州大学医学中心,内布拉斯加州奥马哈州内布拉斯加州大学68198-438-3375,USYASIGHITIAS BIOSTATISTION,U.S.A. 3. U.S.A.佐治亚州萨凡纳,佐治亚州佐治亚州31411,美国5地球和可持续性学院,亚利桑那北部大学,弗拉格斯塔夫,亚利桑那州弗拉格斯塔夫,亚利桑那州86011 86011,美国6古生物学系,国家自然历史博物馆,史密森尼学会国家博物馆,华盛顿州华盛顿特区,20013年,美国俄亥俄州科学院,俄亥俄州7号,新星,新北,43.55。液压实验室,美国陆军工程师研发中心。Vicksburg,密西西比州39180-6199,美国9号海洋生物学实验室,洛杉矶县县卫生区,加利福尼亚州卡森,加利福尼亚州90745,U.S.A.Vicksburg,密西西比州39180-6199,美国9号海洋生物学实验室,洛杉矶县县卫生区,加利福尼亚州卡森,加利福尼亚州90745,U.S.A.
K04超XCHEM用于药物发现的串行MX相对于辐射衰减,25keV增加了衍射产率较高的衍射,弱衍射,不均匀晶体的通量较高 - 膜蛋白和大型复合物
磷通过增强生理功能并刺激生物学活性(例如结节,氮固定和氮和养分吸收)在调节植物的许多代谢活性中起着至关重要的作用。磷溶解细菌的接种剂是一种环保的替代技术,可占据地影响土壤可持续性和植物生长。 大多数North Shewa高地区域的特征是低可用的磷,主要是酸性的,并且表现出强烈的磷吸收。 这项研究的目的是隔离和鉴定植物溶解细菌与小扁豆的根际溶解细菌,并表征其磷酸盐溶解活性。 在生物学系微生物学实验室中进行了文化,生化,生理微生物分析。 pikovskaya的培养基被用来分离,筛选和维持磷酸盐溶解细菌。 磷酸盐溶解细菌是用磷酸三 - 磷酸盐作为指示板中磷的唯一来源。 15种磷酸盐溶解细菌是从小扁豆根根际土壤样品中等同的,其中六种是指定为PSBYE,PSBYR,PSBYM,PSBYM,PSBYL,PSBW和PSBSW的最有效的植物溶解剂。 与未接种对照相比,所有分离株都特别是磷酸三 - 磷酸盐。 从分离株PSBYL观察到最高的磷酸化,值为10.61mg/50ml,其次是PSBW,值为9.08 mg/50ml。磷溶解细菌的接种剂是一种环保的替代技术,可占据地影响土壤可持续性和植物生长。大多数North Shewa高地区域的特征是低可用的磷,主要是酸性的,并且表现出强烈的磷吸收。这项研究的目的是隔离和鉴定植物溶解细菌与小扁豆的根际溶解细菌,并表征其磷酸盐溶解活性。在生物学系微生物学实验室中进行了文化,生化,生理微生物分析。pikovskaya的培养基被用来分离,筛选和维持磷酸盐溶解细菌。磷酸盐溶解细菌是用磷酸三 - 磷酸盐作为指示板中磷的唯一来源。15种磷酸盐溶解细菌是从小扁豆根根际土壤样品中等同的,其中六种是指定为PSBYE,PSBYR,PSBYM,PSBYM,PSBYL,PSBW和PSBSW的最有效的植物溶解剂。与未接种对照相比,所有分离株都特别是磷酸三 - 磷酸盐。从分离株PSBYL观察到最高的磷酸化,值为10.61mg/50ml,其次是PSBW,值为9.08 mg/50ml。pH值的降低与PSB分离株在PVK肉汤中的三磷酸溶解水平相关。在肉汤中生长时,pH值降至4.64,这表明有机酸的产生可能是磷酸盐溶解化的主要机制。
*相应的作者的电子邮件:karimah.m@umk.edu.my; gunavathy@lincoln.edu.my Chilli Pepper是最重要的经济作物之一。但是,蒽(Colletotrichum spp。)是影响辣椒质量和产量的最具破坏性的真菌疾病之一。有必要通过使用天然和环保方法从种子(初始)阶段开始在所有生长阶段控制这种真菌感染。实验室和盆栽研究,以评估用1-脱氧基因霉素(1- DNJ)桑s植物膜对种子发芽,植物生长和蒽糖发育的涂层膜的疗效。1-DNJ Mulberry叶提取物涂料的水平为1、2、3和4%。此外,应用了1%Thiram杀菌剂的阳性对照,以及1-DNJ和Thiram应用的阴性对照。结果表明,用仙人掌提取物感染了炭疽糖的涂料辣椒种子,在处理2、3和4%的桑树叶提取物涂层中,发芽率显着提高了80%以上的发芽率。与正面和阴性对照相比,在种子涂有种子涂有种子的种子涂层的处理中,种子涂有种子的处理中,辣椒植物的生长参数,根长度和芽高明显更大。观察到辣椒幼苗新鲜重量的类似结果,在2%桑叶提取物中,芽新鲜重量是最高的。这些结果清楚地表明,桑叶提取物(1-DNJ)具有抑制colletotrichum spp的潜力。并提高辣椒种子质量。因此,可以将2%桑叶提取物(1-DNJ)作为疾病感染的辣椒种子的涂料配方。关键字:蒽糖疾病,1-脱氧霉素霉素,Colletotrichum spp。,Morus alba L.提取物,种子涂料辣椒辣椒是正在全世界种植和食用的重要商业作物之一。全球耕种和商业化大约有400种不同的辣椒。最受欢迎的品种是Capsicum Annuum L.(Chaudary等人2006)。但是,辣椒作物总是容易出现害虫和疾病攻击。有许多疾病会影响辣椒植物并造成重大产量损失。通常影响辣椒作物的真菌疾病是蒽,尾孢子(Frogeye)叶点,唐尼霉菌,镰刀菌腐烂,镰刀菌,富沙氏菌,疫霉病和白粉病(Hussain and Abid 2011)。即使通过化学施用,最困难的疾病之一是炭疽病。炭疽病是热带和亚热带国家辣椒产量的主要限制,造成巨大的损失。
本摘要探讨了坦桑尼亚农民对高粱种子产品的要求,作为CGIAR和NARES关于种子产品市场细分和目标产品概况设计(TPPS)的讨论的投入。我们采用了一种新颖的方法来识别需求 - 基于Video的产品概念测试(VPCT)。通过与育种者,农民和工业的多次交往,我们确定了七个高粱种子产品概念,五个针对最终使用,饲料,饲料和食物,工业麦芽,食品和饲料,草料;农作物系统的一个概念 - 间培根;和一种靶向材料类型 - 杂化。我们从Dodoma和Shinyanga地区采样了1,100名农民,每个农民都评估并对三个概念进行了评估。农民最有可能选择了混合概念作为他们最喜欢的概念,其次是家庭使用概念。基于这些结果,我们提出了一项关于坦桑尼亚当前市场细分市场和TPP的修订的建议,这是东非最大的高粱生产商。
黑色金属的腐蚀是一个严重的问题,它会降低材料的耐久性并导致重大的经济损失。之所以选择 Melinjo 种子提取物进行研究,是因为其具有作为腐蚀抑制剂的潜力,这归因于单宁化合物的存在,该化合物能够形成覆盖金属表面的复合物。这项研究旨在探索将 melinjo 种子提取物用作铁的生物抑制剂,提供一种有效且环保的解决方案。使用浸渍法提取 melinjo 种子。将 melinjo 种子提取物与 70% 乙醇混合以获得抑制剂溶液。该研究评估了在不同浓度的 melinjo 种子提取物溶液中浸泡的铁的腐蚀速率和抑制效率。结果表明,melinjo 种子提取物具有抑制铁腐蚀的潜力。melinjo 种子提取物的浓度越高,腐蚀速率越低。在 0% 浓度下,最高腐蚀速率为 6.7x10-2 g/cm² 天。当 melinjo 种子提取物浓度为 15% 时,腐蚀率最低,为 1.6x10-2 g/cm² 天。当浓度为 15% 时,抑制效率最高,为 76%。这些结果表明,melinjo 种子提取物是一种有效的黑色金属腐蚀生物抑制剂。