表 1:每 100 架次损失/损坏的飞机数 损失 被敌方击中 击中 1 月 - 6 月 5.5 14.2 16.8 6 月 - 12 月 4.1 7.4 21.4 1 月 - 5 月 2.6 2.2 23.3
95 Pratik Tiwari博士2022-23开发低速抗性的层压大麻纤维复合材料2 7.95 96 Vivek Gupta Dr. 20222-23可持续建筑物从盐水污泥中产生的可持续建筑砖,在氯 - alli工业中产生98 Kumari Monu博士2022-23新技术,使用废塑料2 3.55 99 Seema Wazarkar博士2022-23 Dr. Seema Wazarkar Dr. 2022-23生物聚合物涂层氧化锌纳米材料的开发和评估,用于控制和靶向抗癌药物对三重阴性乳腺癌细胞的释放。
统一专利法院 (UPC) 自 2023 年 6 月 1 日成立以来,已审理了许多侵权诉讼。迄今为止,大多数诉讼都依赖于字面侵权。UPC 非常重视根据权利要求的技术功能对权利要求进行解释,这意味着默认采用“目的性构造”。然而,海牙地方分院 (HLD) 最近的一项裁决援引了基于荷兰测试的等同原则。我们回顾了这一决定,并讨论了其与 UPC 之前的侵权诉讼的相关性。直接和间接侵权统一专利法院协议 (UPCA) 考虑直接侵权(UPCA 第 25 条)和间接或共同侵权(UPCA 第 26 条)。到目前为止,大多数案件都涉及直接侵权。然而,在 Hand Held Products v Scandit 一案中,慕尼黑地方审判庭 (MLD) 在批准初步禁令时认为,由于 Scandit 提供的软件开发工具包是该发明“与基本要素有关的手段”,客户可以使用它来生产所要求保护的条形码扫描设备,从而将该发明付诸实施,因此很可能存在共同侵权。 通过目的性构造侵权 正如我们在最近一篇题为“UPC 无效性”的文章中讨论的那样,UPC 确定每个术语的技术含义并确定所要求保护的发明所要解决的潜在问题,因此实际上应用了对相关权利要求的目的性构造。 权利要求特征必须始终根据整个权利要求来解释(VusionGroup v Hanshow Technology),并且必须始终使用说明书和附图作为解释权利要求的辅助手段(Nanostring v 10x Genomics)。在 Edwards v Meril 案中,MLD 考虑了一种心脏瓣膜支架,其“侧支柱相对于流动轴平行”。MLD 的结论是,“平行”一词不能从严格的数学意义上理解,因为图形显示略微凹陷的形状是可能的,并且不会破坏专利中解释的技术效果:与流动方向的对齐在瓣膜压接时不会改变。因此,“平行”一词被有目的地解释。 等同侵权 在 Plant-e v Arkyne 案中,HLD 近期作出了第一项关于等同侵权的判决。权利要求涉及一种燃料电池,该燃料电池使用微生物氧化化合物作为燃料并产生能量。这种燃料电池在本领域中被称为微生物燃料电池 (MFC)。涉案专利教导了添加植物通过光合作用持续提供化合物,以减少对外部燃料的需求。该产品被命名为植物-MFC (P-MFC)。图 1 的改编版本如下图左所示:
4 作为审核的一部分,我们可能会邀请申请人与项目主任会面,讨论最终选拔之前的任何关键问题/疑虑——此讨论可以以虚拟方式进行,或者我们可能会通过电子邮件就您的提案的某些方面寻求澄清。
本摘要探讨了坦桑尼亚农民对高粱种子产品的要求,作为CGIAR和NARES关于种子产品市场细分和目标产品概况设计(TPPS)的讨论的投入。我们采用了一种新颖的方法来识别需求 - 基于Video的产品概念测试(VPCT)。通过与育种者,农民和工业的多次交往,我们确定了七个高粱种子产品概念,五个针对最终使用,饲料,饲料和食物,工业麦芽,食品和饲料,草料;农作物系统的一个概念 - 间培根;和一种靶向材料类型 - 杂化。我们从Dodoma和Shinyanga地区采样了1,100名农民,每个农民都评估并对三个概念进行了评估。农民最有可能选择了混合概念作为他们最喜欢的概念,其次是家庭使用概念。基于这些结果,我们提出了一项关于坦桑尼亚当前市场细分市场和TPP的修订的建议,这是东非最大的高粱生产商。
在2025年的资金回合中,三重I研究主题是优先考虑新的跨学科合作和伙伴关系,旨在推动感染,免疫和炎症领域。我们邀请创新的学术和临床项目提案,汇集各种专业知识和观点,以应对这些领域内的重大挑战。这些准则反映了我们2025年的重点,但我们建议关注未来的公告,因为它们可能与当前的重点不同。
摘要在这项研究中,提出了对低热稳定性临时粘合胶的优化对物理蒸气沉积(PVD)过程的优化。在各种底物上证明了Cu种子层在通过沟渠中的沉积:硅 - 硅粘合,硅玻璃键合和霉菌键合的底物。在处理过程中记录在这些底物上的表面温度远低于临时键合和去键(TBDB)材料的临界温度。本文重点介绍了PVD工艺的2.5D/3D集成电路(IC)包装中通过硅VIA(TSV)应用的创新。这些结果将在温度较低的范围明显较低的温度范围内稳健地整合具有低热稳定性的各种临时粘合粘合剂,其热稳定性低。引言临时键合和键合材料在实现薄和超薄晶圆底物的处理方面起着重要的中间作用。它为稀薄的Si Wafers提供结构和机械支撑,用于下游包装。这是因为在下游制造步骤期间,薄且超薄的基材具有高弯曲,折叠和有时断裂的趋势。因此,需要借助临时粘合粘合剂来支撑这些稀薄的底物在载体底物上[1]。这允许晶圆进行进一步的过程步骤,例如光刻,沉积等。设备晶圆通常与临时粘合涂层接触以进行支撑。在PVD过程中,金属靶标通过碰撞的热过程转化为原子颗粒。物理蒸气沉积(PVD)是TSV 2.5D/3D IC包装中铜的随后电化学沉积的关键过程步骤。这是一种以平滑表面,出色的机械性能以及对目标底物的良好粘附而闻名的先进材料处理技术。然后将这些颗粒定向到基板上,以在受控的真空环境中进行后续沉积,成核和生长。原子然后将其凝结成在底物上形成物理薄膜。这可以以两种方式进行:溅射和蒸发。在溅射过程中,将气态前体引入反应室,然后将其加速向目标加速,释放原子尺寸的颗粒以沉积到基板上。溅射技术的主要优点是由于加速
自成立以来,许多Rosi种子计划获奖者在获得NIH以及其他联邦或政府机构,基金会和行业合作伙伴赞助的壁外资金方面取得了巨大的成功。我们的教职员工和研究人员继续询问并解决了辐射肿瘤研究主要领域的主要科学问题,包括高级成像,免疫放射治疗,价值和获取,技术驱动的辐射科学(例如,闪光,闪光,重离子)以及数据和计算科学,以命名一些优先级。该计划已成为该部门路线图的基石,使我们的调查人员能够探索有影响力的科学,以使全球患者受益。
研讨会计划每天,参与者将参加由受邀专家和WSSC员工主持的研讨会,为一系列关键主题提供深入的潜水。研讨会主题将涵盖广泛的种子科学和技术,包括开花,胚胎生成和种子表达的基因。其他主题将包括休眠,种子质量,应力耐受性,寿命,发芽标记和种子增强技术。与会者还将探索高级主题,例如种子成熟,种子健康,活力,底漆,涂层和种子微生物组。此外,会议将集中在诸如种子质量控制和基因数据库挖掘等裁缝领域,以确保对该领域的最新进步有全面的了解。通过参加我们的计划,您将受益于出色的培训和资源,使您能够对全球种子行业产生有意义的影响。