摘要:根际,是与根部分泌物直接接触的狭窄土壤区域,并受到土壤微生物的显着影响,是最近一项研究的重点。这项研究检查了中央邦Vindhyachal森林的菌群,重点是对细菌物种从森林偏远地区的分离和分子鉴定。这些微生物可能在早期疫病的生物学控制中具有潜在的应用,这种疾病通常影响马铃薯和番茄作物。这项研究面临着来自Vindhyachal森林偏远地区细菌物种的分离和分子鉴定的困难,这需要精确地收集和处理土壤和植物根本样品。通过探索这些领域的微生物多样性,目的是确定潜在的生物防治剂,可以为早期疫病提供环保和可持续的解决方案。土壤样品。在十月和11月,也从中央邦的Vindhyachal森林的偏远地区收集了植物根材料,称为根瘤菌。样品连续稀释并在营养琼脂培养基上进行条纹进行细菌分离。通过使用PCR和16S区域的分子分析进一步分析培养的细菌以鉴定。这项开创性的研究阐明了微生物学的复杂世界,揭示了各种细菌菌株在促进植物健康中的关键作用,并保护它们免受有害病原体的影响。所研究的细菌包括荧光菌群,Priestia megaterium,枯草芽孢杆菌和一丝叶片芽孢杆菌。这项研究强调了某些细菌在促进植物健康和保护马铃薯免受病原体(包括早期枯萎病)免受病原体的关键作用。这些细菌可能会导致更可持续的农业实践,并增强我们对植物菌相互作用的理解。
将相似的对象归入同一类别,而将不同的对象分为不同的类别。矿物学分类系统也不例外。我们将矿物物种置于其进化背景中,因此需要进行这种归类和拆分,因为我们根据形成环境和连续温度-压力-成分相空间的独特组合对“矿物自然种类”进行分类。因此,只有当两种矿物符合以下条件时,我们才会将它们归类为一个自然种类:(1) 是连续固溶体的一部分;(2) 是同结构或同源系列的成员;(3) 由同一过程形成。根据这些标准进行的系统调查表明,在 5659 种 IMA 认可的矿物种类中,有 2310 种(~41%)可以与一种或多种其他矿物种类归为一类,相当于 667 种“根矿物种类”,其中 353 种矿物种类归为一类,129 种矿物种类归为三类。八大矿物组,包括钙霞石、真假辉石、角闪石、赤铁矿、方解石、辉石英和电气石,由 20 种或更多种 IMA 认可的矿物种类归为一类。根据这些归类标准,5659 种 IMA 认可的矿物种类列表对应 4016 种根矿物种类。
作者:M Devitt · 2021 · 被引用 15 次 — 摘要。最近关于“自然”种类术语的实验工作已经显示出描述性和非描述性参考确定的证据。
我们测试了图像纹理作为新墨西哥州半干旱景观中鸟类物种丰富度的预测指标。鸟类物种丰富度是根据 1996 年至 1998 年在 42 个地块(每个 108 公顷)内的 12 个点进行的 10 分钟点计数总结出来的。我们对 1996 年获取的一组数字正射影像在八种不同的窗口大小中计算了 14 个一阶和二阶纹理测量值。对于 42 个地块中的每一个,我们总结了多个窗口大小内每个纹理值的平均值和标准差。使用线性回归模型评估了图像纹理与平均鸟类物种丰富度之间的关系。单一图像纹理测量(例如标准差)描述了物种丰富度高达 57% 的变异性。将多种纹理测量或高程与单一纹理测量相结合,可描述鸟类物种丰富度高达 63% 的变异性。结合两种纹理测量和粗略栖息地类型的模型可描述鸟类物种丰富度 76% 的变异性。这些结果表明,图像纹理分析是一种非常有前途的工具,可用于表征栖息地结构和预测半干旱生态系统物种丰富度模式。与依赖分类图像的方法相比,该方法具有多种优势,包括成本效益、纳入栖息地内植被变异性以及消除与边界划分相关的错误。© 2006 Elsevier Inc. 保留所有权利。
摘要 AI 系统在塑造和规范全球数百万人类的生活中发挥着越来越重要的作用。人们普遍呼吁此类系统具有更大的透明度。然而,“透明度”的实际含义以及更大的透明度可能意味着什么存在相当大的模糊性。虽然根据一些争论,透明度要求看透工件或设备,但普遍要求透明度意味着看透 AI 系统的不同方面。这两个概念显然相互矛盾,并且它们出现在两个活跃但基本上不相关的争论中。在本文中,我们旨在进一步分析这些要求透明度的内容,并在此过程中阐明我们应该希望 AI 系统具有哪些类型的透明度。我们通过提供一种对不同透明度概念进行分类的分类法来实现这一点。在仔细探索了透明度的不同种类之后,我们展示了这种分类法如何帮助我们驾驭人与技术互动的各个领域,并更有效地讨论技术透明度与人类能动性之间的关系。我们最后认为,在设计更符合道德规范的人工智能系统时,应该考虑所有这些不同的透明度概念。
Rahul Wadhwani 摘要 当前技术水平以及在开发可在太空中重新水化的太空食品方面存在的问题。这项研究侧重于创新的干燥工艺,例如真空干燥和冷冻干燥,这些工艺已被用于保存食物的营养成分和质地。本文还讨论了包装在保护食物免受太空飞行极端条件(例如辐射和微重力)影响方面的重要性。设计太空美食最具挑战性的问题之一是确保宇航员能够快速重新水化并消化食物,因为太空中缺乏水。此外,报告强调了食物必须轻巧紧凑,以减少储存和运输所需的空间和资源。本文还提供了有关冷冻干燥技术和有助于保存食物的包装的信息。总体而言,本文全面回顾了可重新水化太空食品领域的当前技术状况和问题,强调不断尝试创造新的和改进的太空飞行食品保存和包装方法。关键词:太空食品,冷冻干燥,可复水食品,保存,包装,太空食品的种类 1. 引言 太空食品是宇航员在太空中由于失重环境而食用的一种食品。膳食营养对宇航员的生命安全至关重要,不仅因为通过摄入适当的营养素可以维持正确的营养,而且因为在长期太空飞行中,适当的食物在社会心理中起着关键作用。可复水太空食品是一种专为宇航员在太空任务期间食用而设计的食品。它通常经过冷冻干燥或脱水以减轻其重量和体积,并可根据需要用水复水。未来长期的载人航天任务将从地球到月球,然后再到火星。虽然预计火星任务将需要更长的时间(800 到 1100 天),但由于大约有 500 天需要在火星表面度过,因此月球任务可能需要 20 到 30 多天(P Watkins 等人,2022 年)[30] 开发可复水太空食品的关键挑战之一是确保它营养丰富且可以安全食用,同时还要能够承受太空旅行的极端条件。这包括暴露在高水平辐射下、温度和压力变化以及长时间储存。有几种不同的食物是专门为太空旅行期间使用而准备和设计的。食物应该能够在低重力环境中轻松安全地制作、储存和食用,同时还要满足某些标准,以确保在恶劣环境下工作的个人获得充足的营养。尽管宇航员食用的食物和饮料种类繁多,但必须为他们提供含有所有必需维生素和营养素的营养配方,以确保机组人员的工作能力以及神经系统和心理韧性。 (Getsov P 等人,2020 年) [14]。航天环境会引起各种生理变化,包括骨质流失、肌肉质量下降和免疫功能受损,以及肠道运输时间延迟和胃肠蠕动减少,这可能会降低食物吸收率 (Jiahui Jiang 等人,2020 年;Sun 等人,2014 年) [18, 34]。第一次在太空中食用食物是在 1962 年,当时第一个在太空进食的美国人约翰·格伦 (John Glenn)。已经完成了各种任务以改进食品和饮料创新方法。虽然今天的宇航员在地球上享用着由世界顶级厨师烹制的高品质餐食,但未来的太空旅行将需要全新的方式在太空中种植足够的食物,为宇航员在多年的星际旅行中提供足够的卡路里和营养。因此,美国、加拿大、日本和其他国家航天局对开发
CIFOR-ICRAF国际林业研究中心(CIFOR)和世界农林业(ICRAF)设想了一个更公平的世界,从旱地到潮湿的热带地区,所有景观中的树木都可以增强所有人的环境和福祉。CIFOR和ICRAF是CGIAR研究中心。cifor-icraf.org