作者:C Angermueller · 2020 · 被引用 61 — 1989)用于多臂老虎机。然而,AOS 不是老虎机问题,因为时间 t 处的动作会影响不同算法在 t 处获得的奖励……
摘要 作为斑翅果蝇 Drosophila suzukii (Mat sumura, 1931)(双翅目,果蝇科)的寄生蜂,巴西果蝇(Ihering, 1905)复合体中的分类学和宿主关联性得到了密切研究。最初,鉴定出五个基因组(G1-G5),表明存在宿主范围和地理分布各异的隐蔽物种。被称为“G1”的菌株最近被描述为 G. kimorum Buffington, 2024,并获准在美国和欧洲部分地区作为经典生物防治剂释放。同时,在加拿大不列颠哥伦比亚省发现了 G. kimorum 的外来种群,并且可能正在蔓延到太平洋西北部的部分地区,例如美国华盛顿州。在这里,我们比较了实验室培育的 G. kimorum(采集于日本东京)与美国华盛顿州发现的外来种群的生殖兼容性和分子相似性。东京种群和外来种群之间的杂交实验表明,它们交配成功并产下雌性后代,表明它们具有生殖兼容性。对于这两个种群,线粒体 COI
遗传害虫管理策略在 20 世纪初被提出,并于 20 世纪中期开始实施,其中昆虫不育技术 (SIT) 是其中的佼佼者 (130、131、202)。在 SIT 中,不育雄性被释放出来与野生雌性交配,随着时间推移,这种技术频繁大规模释放,可以抑制甚至消灭种群。该领域的早期工作依赖于辐射来产生不育突变 (17、131、207)。大规模实施该技术取得了巨大成功,彻底消灭了北美大部分地区的新大陆螺旋蝇 (131),并抑制了其他一些物种 (83、179)。然而,遗传和其他技术挑战阻碍了抑制某些物种的尝试取得成功。在开展这项工作的同时,人们探索了许多其他控制方法,这些方法基于转基因时代之前对害虫遗传学的操作(例如易位和倒位),但总体上并没有取得很大的成功(100)。人们开始思考用于种群管理的遗传技术,特别是那些旨在自我维持的技术,这种思考始于 50 多年前(64, 201),其灵感来自于生命各个领域中越来越多的自然发生的自私遗传元素 [以下称为基因驱动 (120)] 的行为。许多这样的基因驱动是在遗传学领域早期发现的,通常是由于意外的突变率、性别比例偏差或特定基因型的死亡率而偶然发现的。这些驱动有利于它们的传播,而牺牲了基因组中的其他基因。这种行为可能导致这些驱动相对于相应的染色体对应物扩散,即使它们的存在会给携带者带来适应度成本(即降低整个种群的适应度)(78、95、104、178、226)。自然产生的基因驱动在形式和机制上千差万别,包括性别比例扭曲元件、减数分裂驱动元件和毒素-解毒剂系统(3、66、67、104、117、148)、转座元件(157、178、188)、可遗传微生物(62、80、225)和归巢内切酶(37、38)。这些自然基因驱动的潜在机制启发了合成基因驱动系统的创建(120)。
上下文。迄今为止,绝大多数系外行星的发现都发生在太阳能街区的恒星周围,化学成分与太阳相当。然而,模型表明,具有不同动力学历史和化学丰度的不同银河环境中的行星系统可能会显示出不同的特征,这可以帮助我们改善我们对行星形成过程的理解。目标。这项研究旨在评估即将到来的柏拉图任务的潜力,以研究各种银河环境中恒星周围的系外行星种群,特别关注银河系薄磁盘,较厚的磁盘和恒星光环。我们旨在量化柏拉图在每个环境中检测行星的能力,并确定这些观察结果如何限制行星形成模型。方法。从全天空的柏拉图输入目录开始,我们将240万个FGK恒星分类为它们的分解银河系。对于长期观察LOPS2和LOPN1柏拉图田中恒星的子样本,我们使用新一代行星种群合成数据集估算了行星的发生率。将这些估计值与柏拉图检测效率模型相结合,我们预测了在标称2+2年任务中每个银河环境的预期行星产量。结果。基于我们的分析,柏拉图很可能检测到富含α的厚磁盘周围的至少400个系外行星。柏拉图田有3400多个潜在的目标恒星,其中有[Fe/H] <−0.6,这将有助于提高我们对金属贫困恒星周围行星的理解。结论。这些行星中的大多数被预计是半径的超近美和亚元素,其半径在2至10 r r介于2至50天之间,这是研究半径谷与恒星化学之间的联系的理想选择。对于金属贫乏的光环,柏拉图可能会检测1至80个行星,其周期在10到50天之间,这取决于潜在的金属性阈值,即行星形成。我们确定了高优先级,高信号到空的柏拉图P1样品中47个(运动学分类)恒星的特定目标列表,在金属贫困环境中寻找行星时提供了主要机会。柏拉图的独特功能和大量的视野位置是在银河系中各种银河环境中研究行星形成的宝贵工具。通过探测具有不同化学成分的恒星周围的系外行星种群,柏拉图将为恒星化学与行星形成之间的联系提供有益的见解。
亚洲,欧洲和近东群。将获得的结果与使用大型常染色体SNP产生的结果进行了比较。我们观察到居住在该国南部和中部地区的人群之间存在微小但重要的区别。此外,在两个柏柏尔人群(Nouvelle Zraoua和Tamezret)和R'Baya的半游牧阿拉伯群体中检测到了遗传隔离的强大特征。我们的调查表明,调查的突尼斯南部人口的遗传结构保留了发生在7-17世纪之间的历史事件的签名,尤其是萨哈拉式奴隶贸易和阿拉伯征服期间南部偏远地区的柏柏尔人的移民。
4生物识别技术和进化生物学实验室,伯纳德大学,里昂-1,法国抽象的蜜蜂是支持粮食安全和自然生物多样性的重要授粉媒介。它们也是食品,制药和化妆品行业中使用的各种蜂蜜蜜蜂衍生产品(API-Lododucts)的来源。然而,各种生物学,化学和物理因素威胁着野性和管理蜜蜂的种群和生物多样性。在巴基斯坦的背景下,这些挑战尚未得到阐述;因此,这篇综述旨在识别和描述巴基斯坦蜜蜂的野生和驯化种群的威胁。该国有四种蜜蜂物种,西部蜜蜂(Apis Mellifera)目前是主要的驯化物种。气候变化和城市化正在改变蜜蜂的栖息地。此外,农产品被广泛用于管理新兴的害虫,加剧环境污染。大多数城市地区的空气质量对蜜蜂有毒。尽管偏远的森林地区可以为这些昆虫提供栖息地和食物,但低森林覆盖物和不可持续的造林仍然是重大障碍。微塑料和抗菌药物正在影响蜜蜂的适应性,并且还会出现在其产品中,使其成为一个健康问题。电磁信号还影响蜜蜂的健康和行为。总体而言,所有这些因素都会影响蜜蜂的健康和菌落健身,最终导致托管和野生蜜蜂的人口下降。此信息的目的是协助决策者,研究人员,养蜂人和教育者在巴基斯坦的背景下理解蜜蜂人口所面临的障碍。
引言2011年莫哈韦沙漠乌龟的恢复计划将“人口增强”确定为恢复乌龟的关键战略因素,这是由于整个范围内的乌龟种群的明显下降以及多方面的相互作用威胁和自然人口增长速度的降低(USFWS 2011)。本文件应用国际自然/物种生存委员会的重新引入和其他保护易位的指导(IUCN/SSC 2013),概述了一种加强乌龟数量的策略,其中低密度排除该物种迅速增加,从而从人口统计学脆弱中恢复了。该策略主要预期使用“缓解易位” - 通过人为的土地利用变化和替代地点释放而丧失的生物体,从栖息地造成生物体,但主要重点将放在接收人群的保护益处,而不仅仅是迅速将个人从HARM中移除的人(IUCN/SSC 2013)。我们已经确定了区域增强站点以实现此目的的必要性(USFWS 2011,2020)。也正在进行一些实验性的启动项目,并且可以根据鱼类和野生动物服务局的受控繁殖政策将其整合到特定的增强计划中(USFWS 2000)。人口增强并不是为了保护沙漠乌龟的长期战略,而是一种旨在通过自然过程更快地增加人口的中级策略(USFWS 2011)。人口增强直接适用于前两个恢复标准:此策略为制定个人增强计划提供了背景,该计划还应包括设计,可行性和风险评估,实施,监测,评估和调整元素(IUCN/SSC 2013)。目标和目标该策略的目标是利用人口增强,以明显地帮助实现恢复计划中确定的五个恢复单元中的每个单元(USFWS 2011)。
昆虫作为捕食者,猎物,传粉媒介,回收者,宿主,寄生虫和经济上重要产品的来源起着重要作用。他们也可以摧毁农作物;伤口动物;并充当植物,动物和人类疾病的向量。基因驱动器 - 一种基因,基因复合物或编码特定特征的染色体,即使这些特征为携带者带来了适应性的成本,也为携带者带来了健身成本,这为改变人群的新机会提供了新的机会,以使人类和以特定物种和可持续性和可持续性和可持续性和可持续性的方式使人类受益。基因驱动可以用来改变现有种群的遗传组成,称为人群修改或替代,或者导致种群抑制或消除。我们描述了正在考虑的技术,已经取得的进步以及剩余的技术障碍,这在进化稳定性方面尤其是我们控制引入种群中基因的传播和最终命运的能力。
Covid-19的疫苗分配策略是影响病毒扩散的效率和控制的新出现和重要问题。为了提高疫苗分布的公平性和效率,本文研究了在疫苗数量有限的情况下优化疫苗分布的优化。我们在分发疫苗之前要注意目标人群,包括对疫苗接种的态度,疫苗接种优先组和疫苗接种优先政策。此外,我们考虑库存和预算指数,以最大程度地提高疫苗资源的精确调度。从公平性和效率的角度考虑目标人群的疫苗分布开发了一种混合智能编程模型。最后,提供了一个案例研究来验证模型并提供疫苗分布的见解。
这项研究是为了更好地理解喀麦隆的Clarias Jaensis自然种群的表型多样性,目的是利用对这种天然cat鱼的剥削和保护。在喀麦隆的6个地点在6个地点采样了总共269个本地cat鱼(Clarias Jaensis),其中包括139名男性和130名女性。评估了一(1)个幻象观察,评估了十七(17)个生物特征和四(4)个Meristic性状。主要的结果表明,背侧区域有三种颜色模式(棕色,黑色和大理石大理石),在clarias jaensis中有三种颜色模式,棕色(81.04%)和黑色(11.52%)模式占主导地位。性别对总体重(TW),鼻子长度(SNL),前长度(PPVL),总长度(TL),标准长度(SL),身体深度(BD)和尾花梗深度(CPD)的影响是显着的(P <0.05)。通常,生物特征特征是显着的(p <0.05),并且与总重量呈正相关。背鳍(D)和肛门鳍射线中的软鳍射线数(a)与总重量(分别为r = -0.02和r = -0.04)负相关,而胸鳍中软鳍射线的数量是负相关的,并且与总重量较弱(r = 0.13)。对所有生物识别和生物特征进行的主成分分析(PCA)表明,仅前两个轴仅占总惯性的50%以上。分层上升分类(HAC)强调了3种形态的存在。观察到的生物多样性表明,Clarias Jaensis catfish是一种自然遗传资源,尽管需要制定人口和栖息地监测计划,但必须利用必要的可变性。