种群遗传学和进化:自然种群的遗传多样性;人口结构;基因流量和迁移率;景观遗传学/基因组学;中性和适应性变化以及适应性研究。遗传改性的生物(GMO):克隆和基因编辑在农业和保护中的潜在用途。转基因生物对自然社区的影响。环境DNA:用于遗传监测野生种群的工具,例如使用从水或土壤中取样的EDNA来确定侵入性或稀有物种的存在。保护服务中的分子生态学:监测野生种群(例如人口规模,野生动植物疾病);识别杂种;保护单位;圈养人群的遗传管理。先决条件:遗传学或分子生物学中的基本课程(本科水平)。相关教科书:Beebee,T。J。C.和G. Rowe。2017。第三版。分子生态学简介。牛津大学出版社,牛津;纽约。Freeland,J。R.,H。Kirk和S. Petersen。2011。分子生态学。Wiley-Blackwell,牛津。课程中将提供相关文章。
摘要:作为种子分散剂,传粉媒介和捕食者,鸟类在各自的生态系统中扮演着许多重要的作用。目前,禽类人口以前已经存在,可能会受到气候变化的影响。气候变化会导致分布范围转移,迁移模式改变以及繁殖成功以减少。气候变化也可能影响植物和无脊椎动物猎物,从而调节食物的可用性和可及性以及可能的生殖潜力。鉴于鸟类自然历史的复杂性以及生态变量对生存的重要性,气候变化对鸟类物种的影响很难预测。 鉴于鸟类物种的全球生物学重要性,保护主义者需要认识到基于最准确的可用数据的禽类种群的这些潜在变化及其影响和设计适当的行动计划。鉴于鸟类自然历史的复杂性以及生态变量对生存的重要性,气候变化对鸟类物种的影响很难预测。鉴于鸟类物种的全球生物学重要性,保护主义者需要认识到基于最准确的可用数据的禽类种群的这些潜在变化及其影响和设计适当的行动计划。
山区的生物经常暴露于极端气候,并且最容易受到气候变化的影响。对沿着海拔梯度的鸟类的长期研究,对于理解物种动态至关重要,在热带山脉中很少见,这限制了面对气候变化时了解其人口趋势的能力。我们在13年(2011 - 2023年)中建模了地下鸟类物种(n = 18)的局部丰度。Kasigau,肯尼亚,使用沿高度梯度收集的雾网数据。 我们的模型在研究期间显示出相对稳定的鸟类丰度。 但是,我们发现两次不同的人口崩溃影响了2015年和2022年大多数物种,这表明局部动态的变化可能导致山区鸟类种群的大量下降。 大多数物种在研究期间具有稳定的局部丰富性,但是参数引导显示一些趋势的下降趋势,包括一个流行的威胁物种。 我们强调了山区在面对全球环境转变(例如气候变化带来的)方面维持相对稳定的人群中的重要性,以及相对较小的空间变化的鸟类种群的活力。 面对温暖的气候,山区生态系统被视为潜在的生物多样性避难所,但需要进一步的研究来了解较高海拔高度的鸟类种群中短期和长期下降的驱动因素,尤其是在热带非洲。Kasigau,肯尼亚,使用沿高度梯度收集的雾网数据。我们的模型在研究期间显示出相对稳定的鸟类丰度。但是,我们发现两次不同的人口崩溃影响了2015年和2022年大多数物种,这表明局部动态的变化可能导致山区鸟类种群的大量下降。大多数物种在研究期间具有稳定的局部丰富性,但是参数引导显示一些趋势的下降趋势,包括一个流行的威胁物种。我们强调了山区在面对全球环境转变(例如气候变化带来的)方面维持相对稳定的人群中的重要性,以及相对较小的空间变化的鸟类种群的活力。面对温暖的气候,山区生态系统被视为潜在的生物多样性避难所,但需要进一步的研究来了解较高海拔高度的鸟类种群中短期和长期下降的驱动因素,尤其是在热带非洲。
1。我可以理解地球材料的组成。2。i可以将科学数据与自然界中的当前理论和事件联系起来。3。i可以应用物理和化学过程来评估过程如何改变地球表面。4。我可以将大气的特征与对人类种群的影响联系起来。5。我可以用科学概念来解释宇宙中的互动。6。i可以证明科学方法的适当应用,并能够转移这些
此外,加利福尼亚州为某些具有不令人满意的移民身份(UIS)的成员提供了Medi-Cal覆盖范围,称为UIS人群。UIS成员有资格获得与令人满意的移民身份(SIS)的成员相同的州计划服务,但在联邦政府有资格仅接受与怀孕有关的紧急服务。通过与CMS的通信,DHC需要分别设定UIS和SIS种群的人力。此外,UIS人口的人力率必须由联邦符合条件的服务(即与妊娠相关和紧急服务)以及仅由州支付的服务(所有其他服务)来分开。在此认证中获得认证的费率中,UIS和SIS种群分开。最后,SIS的人口人口人数率已获得所有组件的认证,而只有联邦资格的率组件才获得UIS人群的认证。UIS和SIS种群的基本数据是单独的,并且使用已经分离的这些人群分开的基本数据开发了推导率。除非另有说明,否则所有提及UIS人权率的参考仅为联邦组成部分。
淡水龟种群的保护依赖于精准有效的监测技术。环境 DNA (eDNA) 分析是识别水生生态系统中隐蔽和难以捉摸的龟种的潜在方法。eDNA 分析有助于确定保护工作的重点区域并监测种群水平随时间的变化。本研究旨在评估一种快速 eDNA 检测方法对黄泥龟 (Kinosternon flavescens,一种在美国某些州濒临灭绝的指示种) 的有效性,该龟栖息于南德克萨斯州卡梅伦县的当地牛轭湖(例如 resacas)。一种针对物种的嵌套 PCR 检测旨在增强对黄泥龟种群的检测。我们从卡梅伦县的五个地点采集了水样以检测黄泥龟 eDNA。结果显示,在五个调查地点中有两个地点有黄泥龟存在。我们的研究表明,eDNA 监测对黄泥龟种群具有巨大潜力。该研究还提供了使用 eDNA 监测保护黄泥龟物种的见解,并为未来的研究和保护举措提供了建议。
图2:AU NP种群的吸附动力学。(a)对使用吊坠降张力仪测试的所有混合物获得的界面张力数据。(b)λ最大。(c)通过所有λ的强度总和测量的集成强度。(d)Jain等人估计的颗粒间距。[26]在所有图中(N PS = 0,0.17,0.24,0.48,0.66,0.73,0.79,0.83),颜色从蓝色变为红色。
主题是“从同类诊所到诊所:全球医疗保健的新景观”,会议旨在应对将精密医学的进步转化为患者护理的切实增强的挑战和机遇,并重塑现代医疗保健的景观。它还旨在催化和促进跨种群的研究和设计跨科罗特飞行员项目,以应对各种全球挑战。
抽象分散是生态和进化的中心过程。它强烈影响了结构化种群的动力学,并通过塑造基因流的模式来影响进化过程。由于这些原因,分散受到了生态学家,进化生物学家和保护主义者的极大关注。尽管已经在鸟类和哺乳动物等分类单元中进行了广泛的研究,但对在具有复杂生命周期(例如池塘繁殖的两栖动物)的脊椎动物中的分散知之甚少。在过去的二十年中,研究人员使用广泛的实验和观察方法对两栖动物的兴趣不断增加,并启动了基础和应用研究。这项研究揭示了复杂的分散模式,因果关系和综合性,对两栖动物种群的人口统计学和遗传学产生了巨大的后果。在这篇综述中,我们的目标是:重新定义并澄清两栖动物的概念;回顾当前对个人(条件依赖性分散)和环境(即依赖文本依赖性分散)因素的影响的知识,即传播的三个阶段(即移民,瞬态和移民);确定分散在空间结构的两栖动物种群中的人口和遗传后果;并提出了新的研究途径,以扩展我们对两栖动物分散的理解。
摘要。本文的重点是对马铃薯农业生物症中科罗拉多州马铃薯甲虫种群的全面研究。研究深入研究了甲虫种群的形成和生物生物特征的复杂过程。该文章还深入研究了一个被称为Beauveria bassiana VTQ-28的特定菌株,该菌株是从科罗拉多州马铃薯甲虫中分离出来的。该菌株在实验室环境和现场进行了测试,针对科罗拉多州马铃薯甲虫的各个发育阶段。目的是评估Bassiana VTQ-28作为对甲虫的生物防治剂的有效性。此外,该研究还评估了苏云金芽孢杆菌对科罗拉多州马铃薯甲虫的局部采购菌株的杀虫活性。此分析提供了苏云金芽孢杆菌菌株作为生物控制的另一种途径的潜力的见解。通过彻底检查人口动态,生物生物学特征以及特定微生物控制科罗拉多州马铃薯甲虫的潜力,这项研究有助于理解马铃薯农业生物症中的有害生物管理策略。这些发现对可持续农业实践和这种具有经济意义的害虫的有效控制具有影响。关键字。Beauveria Bassiana,B。苏云金,生物防治,微生物,科罗拉多州马铃薯甲虫。