占用率监测技术可以随时告知维护和规划专家各个空间中究竟有多少学生、教职员工。通过提供从整栋建筑到楼层的实时或一段时间的可视性,管理员可以使用占用率数据更有效地分配资源。规划人员还可以专注于设计更安全的空间,并在紧急情况下充分容纳交通流量。
终末期器官衰竭或急性创伤性损伤与相当高的发病率和死亡率相关。对于许多此类绝症或毁灭性疾病,唯一的治愈疗法是实体器官移植 ( Garry 等人, 2005 年; Virani 等人, 2021 年 )。由于器官捐赠者数量有限,这种治愈性疗法仅适用于需要这些疗法的一小部分患者。例如,据估计,每年有 20 万至 30 万美国成年人可从原位心脏移植中受益,但只有大约 3000 名成年人接受了心脏移植 ( Virani 等人, 2021 年 )。这种差异推动了人们寻求替代疗法。除了心脏病等终末期器官疾病外,还有威胁四肢并最终导致肌肉体积损失的创伤性损伤 ( Corona 等人, 2015 年; Greising 等人, 2016 年 )。目前,治疗肌肉体积损失的治疗方法有限,因此导致大量发病率、截肢、终身残疾和生命损失(Greising 等人,2017 年)。这些慢性疾病和创伤需要新的治疗方法。基因编辑(Doudna 和 Charpentier,2014 年;Jinek 等人,2012 年;Cong 等人,2013 年)和体细胞核移植 (SCNT) 技术等技术进步
• 拓扑 2:T 型拓扑因晶体管围绕中性点 (VN ) 排列的方式而得名。Q1 和 Q2 连接直流链路,Q3 和 Q4 与 VN 串联。滤波器看到的纹波频率等于施加到开关 Q1 至 Q4 的 PWM 频率。这定义了滤波器元件的大小,以实现交流线路频率下所需的低总谐波失真。Q1 和 Q2 看到全总线电压,并且需要额定为 1,200 V,才能在系统中为 800 V 直流链路电压。由于 Q3 和 Q4 连接到 VN ,它们只看到一半的总线电压,并且在 800 V 直流链路电压系统中可以额定为 600 V,这节省了这种转换器类型的成本。请参阅 10 kW 双向三相三级 (T 型) 逆变器和 PFC 参考设计。 • 拓扑结构 3:在有源中性点钳位 (ANPC) 转换器拓扑结构中,VN 与有源开关 Q5 和 Q6 连接,并将 VN 设置在直流链路电压的中间。与 T 型转换器一样,滤波器看到的纹波频率等于定义交流线路滤波器大小的 PWM 频率。这种架构的优点在于,所有开关的额定电压都可以是最大直流链路电压的一半;在 800-V 系统中,您可以使用额定电压为 600-V 的开关,这对成本有积极影响。关闭此转换器时,重要的是将每个开关上的所有电压限制为直流链路电压的一半。换句话说,控制微控制器 (MCU) 需要处理关机排序。TI 的 TMS320F280049C 和 C2000™ 产品系列中的其他设备具有可配置逻辑,允许在硬件中实现关机逻辑,以减轻 MCU 的软件任务负担。请参阅基于 GaN 参考设计的 11kW、双向、三相 ANPC。• 拓扑 4:中性点钳位 (NPC) 转换器拓扑源自 ANPC 拓扑。此处,VN 通过二极管 D5 和 D6 连接,并将 VN 设置在 DC 链路电压的中间。滤波器看到的输出纹波频率等于定义 AC 线路滤波器大小的 PWM 频率。与 ANPC 拓扑一样,所有开关的额定电压都可以是最大 DC 链路电压的一半,但不是另外两个开关,而是两个快速二极管。与 ANPC 拓扑相比,NPC 拓扑的成本略低,但效率略低。关断排序的要求也与 ANPC 拓扑相同。可以很容易地从上面提到的 ANPC 参考设计中派生出 NPC 拓扑。• 拓扑 5:飞行电容拓扑已经告诉您此转换器中发生的情况;电容器连接到由 Q1 和 Q2 以及 Q3 和 Q4 实现的堆叠半桥的开关节点。电容器两端的电压被限制为直流链路电压的一半,并在 V+/V– 之间周期性地变化;变化时,功率传输。此拓扑在正和负正弦波期间使用所有开关。在此拓扑中,滤波器看到的输出纹波频率是飞跨电容器每个周期移位的 PWM 频率的两倍,从而导致交流线路滤波器尺寸较小。同样,所有开关的额定电压均为最大直流链路电压的一半,这对成本有积极影响。
此开放获取由 ScholarWorks@GVSU 本科生研究与创意实践部门免费提供给您。它已被 ScholarWorks@GVSU 授权管理员接受纳入荣誉项目。如需更多信息,请联系 scholarworks@gvsu.edu 。
摘要本报告包括演示文稿的内容,并在讨论了德国马丁斯里里德(Martinsried)的德国心脏移植中心的讲习班,以心脏异种移植。描述了受体中基因修饰的供体猪的生产和当前可用性,器官收集期间的保存技术以及免疫抑制方案。针对合适的患者的选择标准,以及针对异种移植物过度生长问题的可能解决方案。显然,对于接收者而言,微生物学安全和密切联系至关重要,并且要解决公众接受临床应用的道德考虑。第一项临床试验将由保罗 - 埃里希(Paul-Ehrlich-Institute)作为德国的国家主管机构进行监督和监督,德国心脏移植中心同意合作选择第一名患者进行心脏异种繁殖。
。CC-BY 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在
1 进化实验室,遗传学系,“Luiz de Queiroz”农学院,圣保罗大学,皮拉西卡巴,巴西,2 技术分析与模拟实验室,农业工业技术和农村社会经济系,农业科学中心,圣卡洛斯联邦大学,阿拉拉斯,巴西,3 植物生物技术实验室,生物技术系,植物和动物生产,农业科学中心,圣卡洛斯联邦大学,阿拉拉斯,巴西,4 植物育种实验室,生物系,伯南布哥联邦农村大学,累西腓,巴西,5 生物技术系,植物和动物生产,圣卡洛斯联邦大学,阿拉拉斯,巴西,6 植物标本馆管理研究核心,维管植物研究中心,植物研究所,圣保罗,巴西,7 细胞和分子生物学实验室,农业核能中心,圣保罗大学,皮拉西卡巴,巴西,8 圣保罗大学农业核能中心植物育种实验室,巴西皮拉西卡巴
在目前的临床前抗肿瘤研究中,普遍缺乏能够快速高效筛选有效抗肿瘤药物的体内模型。斑马鱼作为与人类基因相似度高达 87% 的物种,已被广泛用于模拟人类疾病,被认为是研究癌症发展、增殖和转移的替代经济模型。斑马鱼肿瘤异种移植模型已被有效用于各个层面的癌症药物开发,包括靶标验证和可能参与肿瘤调控的长链非编码 RNA (lncRNA) 的高通量筛选。在这篇综述中,我们全面概述了斑马鱼作为癌细胞生长、迁移、抗肿瘤免疫治疗和抗肿瘤药物筛选的体内模型。此外,一些活性 lncRNA 的调控机制已被确定在癌症的发病机制中发挥作用,但仍有必要利用高效的斑马鱼模型来筛选和进一步了解这些分子在肿瘤发展和迁移中的作用。目前的抗肿瘤疗法受到严重毒性和多药耐药性的限制。迫切需要经济高效的体内研究工具来提高我们的理解并克服这些问题。本文综述了使用斑马鱼模型进行抗肿瘤研究的不同目的。我们讨论了斑马鱼在癌细胞增殖和转移、识别信号通路、癌症药物发现和治疗开发以及毒性研究中的应用。最后,本综述强调了该领域的局限性和未来方向,以有效利用斑马鱼作为癌症治疗开发的高效模型。
在全球范围内,微塑性污染对海洋生物群具有许多负面影响,这加剧了其他形式的全球人为障碍的影响。越来越多的证据表明,微塑料(MPS)不仅通过摄入造成物理损害,而且还通过浸出吸收和吸附化学物质来充当危险化合物的媒介。对塑料污染作用的研究在很大程度上假定物种均匀反应,同时忽略了种内多样性(即单个物种内的变化)。我们研究了源自工厂新鲜(处女)和滩开的微塑料对地中海贻贝Mytilus Galloprovincialis的两个遗传谱系的行为反应的塑料浸出物的影响。通过实验室行为实验,我们发现,在暴露于海滩微塑料(海滩MPL)的渗出液中,大西洋标本的移动率明显少于地中海个体,就(i)(i)通过移动和(ii)净距离响应的个体比例(i)净距离和距离。相比之下,在暴露于Virgin Micropolpics(Virgin MPLS)的MPL时,在成年人或新兵的行为中未观察到显着的种内差异。此外,在浓度增加(木炭过滤海水中的10-5 m至10-3 m)以增加浓度的三个氨基酸(L-半胱氨酸,脯氨酸和L-达糖碱)的提示接收,通过使用Mussel触及海滩MPLS或对照海水进行的电生理学分析测试了在木炭过滤的海水中接受提示。我们发现,对10-3 m L-半胱氨酸的反应(无论处理如何)和10-4 m L-半胱氨酸(在暴露于海滩MPLS的贻贝中)和10-3 M脯氨酸(在暴露于海滩MPLS的贻贝中)和10-5 m l- L-L- lel- L-L-丁嘧啶的反应明显差异。我们的研究表明,海贻贝的种内变异可能会引起对塑料污染的不同反应,这可能是由于谱系之间的局部适应和生理变异而引发的。我们的工作强调了评估种内变异的影响的重要性,尤其是在环境前哨物种中,因为这种多样性水平可以调节对塑料污染的反应。