通过端粒到核(T2T)基因组学对植物种质资源的精确探索标志着植物基因组学领域的变革性一步,为对植物遗传多样性,适应性和进化的深入了解开辟了前所未有的机会。该研究主题的目的是强调测序和组装技术的最新进步,这些技术允许建造高质量的全长T2T基因组,并探讨这些突破如何促进和利用有价值的植物种植资源。实现T2T完整性对于提供染色体的详尽表示至关重要,捕获以前难以捉摸的遗传信息,并为全面的注释铺平了道路。这张广泛的遗传图提供了对基因功能,基因组结构和植物特征的遗传基础的更深入的见解,所有这些都对改善农业实践和确保植物生物多样性的可持续性都是基本的。随着我们继续目睹测序技术的快速发展的景观,该研究主题旨在促进研究T2T基因组数据的巨大潜力的研究。我们关注这些基因组见解如何增强物种保护工作,为育种计划提供信息,并为遗传资源管理提供宝贵的信息。此外,我们深入研究了可转座元素在塑造植物基因组中的作用,研究了它们与基因组结构的动态相互作用及其对适应和进化所需的遗传鲁棒性的贡献。通过将有关T2T基因组组装,可转座元素动力学以及在植物育种和保护中的应用汇总在一起,该研究主题是旨在利用植物基因组学的研究人员的综合资源。最终,我们的目标是促进植物基因组学的进一步进步,这将有助于全球农业的更具可持续性和弹性的未来。
老芒麦是一种优良的饲草和生态修复草,在草原生态建设和畜牧业可持续发展中发挥着重要作用。中国老芒麦野生种质资源丰富,相似和对比的气候条件塑造了不同的种群,丰富了老芒麦的遗传多样性。为了更全面、低成本地聚合老芒麦种质资源,更精准地利用其遗传变异,本研究对老芒麦核心种质资源收集及利用单核苷酸多态性(SNP)标记进行指纹分析进行了初步探索。通过多种评价指标结合加权处理,从90份野生老芒麦样品中成功鉴定出36份材料作为核心种质。 36个核心种质样品的遗传多样性评估、等位基因评估和主成分分析均表明这36个样品准确、全面地代表了90份老麦种质的遗传多样性。另外,从90份老麦样品全基因组测序产生的高质量SNP位点中,鉴定出290个SNP位点作为候选标记,其中52个SNP位点被筛选为老麦DNA指纹分析的核心标记。并利用竞争性等位基因特异PCR(KASP)技术,基于这些核心标记对60份野生老麦种质进行了居群起源鉴定。本研究筛选出的核心SNP标记能够准确区分来自青藏高原和其他地区的老麦种质资源,为老麦种质资源的继续收集和鉴定提供参考,也为老麦种质资源的保存和利用提供科学依据。
摘要:由于维生素,蛋白质,矿物质元素和活性物质丰富,因此已证明绿豆种子的高药和经济价值被证明对人有益。为了完全识别出优质种质资源的绿豆产量和质量育种的优质种质资源,通过多样性分析,相关性分析,主成分分析(PCA)和群集分析,对八个种子表型特征的遗传多样性水平进行了全面评估。结果表明,八个种子表型性状的遗传多样性具有302个绿豆种质资源,其香农多样性指数范围为0.25至2.09。对于大多数特征,它们的变异系数(CV)超过10%,最高为种子形状(41.51%)。相关分析表明,100种子的重量与种子大小,种子长度,种子宽度和种子厚度具有极为正相关的相关性。PCA表明,前三个主要成分的累积贡献率为78.551%。这些主要成分包括种子宽度,种子外套和种子颜色。通过群集分析将302个绿豆种质资源分为八组。从I组和II组中选择了共有140种具有大种子的种质资源,其中II组中的9种种质资源可能是高收益的品种。关键词:绿豆,种子表型特征,遗传多样性,聚类分析,主要成分。总体而言,这项研究不仅表明研究的种质资源之间有足够的差异,而且还为绿豆种质资源的选择,利用和杂交育种提供了理论基础。
IQIP 顾问将在首次 IQIP 访问期间为您提供使用 ImmTrac2 数据评估的儿童和青少年群体的疫苗接种覆盖率。供应商将与 IQIP 顾问合作,确定要实施的两种 QI 策略并制定策略实施计划 (SIP)。顾问将转入 TVFC 合规现场访问,在现场访问的这一部分完成后,将审查疫苗管理计划、资格筛选协议以及疫苗储存和处理实践和程序。
尽管拟南芥最初主要是一个功能生物学系统,但由于其广泛的地理分布和对不同环境的适应性,它已发展成为种群基因组学的强大模型。这里我们展示了来自全球物种范围的 69 个种质的染色体水平基因组组装。我们发现基因组共线性非常保守,即使在地理和遗传上相距遥远的种质之间也是如此。沿着染色体臂,兆碱基级重排很少见,通常只存在于单个种质中。这表明核型是准固定的,染色体臂中的重排是反向选择的。着丝粒区域显示出更高的结构动态,核心着丝粒的分歧解释了大多数基因组大小变化。全基因组分析发现了 32,986 个不同的基因家族,其中 60% 存在于所有种质中,40% 似乎是可有可无的,包括 18% 只存在于单个种质中,这表明存在未开发的基因多样性。这 69 个新的拟南芥基因组组装将为未来的遗传研究提供助力。
抽象茶厂在生物活性化合物中丰富,包括类黄酮,氨基酸,生物碱,萜类化合物和脂质,这些主要影响茶质量和口味。尽管有许多关于不同茶品种的代谢产物的研究,但其生物合成和调节的组成差异仍然是未知的。在这项研究中,使用靶向的代谢组学广泛的代谢组学,包括192个黄酮和28 neminds和28 amino,从根尖的芽中检测到505种代谢产物('shuchazao':'scz':'scz':'scz':'huangkui':'hk'和'hk'和'zijuan':'zj':'zj'。代谢产物分析表明,黄酮醇和花色苷主要以三种品种的糖苷形式分布,其中花青素及其糖苷主要在“ ZJ”中积累,表明与颜色属性有相关性。EGCG成为三种品种中最丰富的Flavan-3-ols化合物。l-茶氨酸代表主要的游离氨基酸,与1叶相比,主要集中在顶端芽中,但同样,脂质与游离氨基酸相似,主要是在三个品种的顶端芽中积聚。这些发现为遗传和代谢物多样性提供了宝贵的见解,从而增强了我们对茶叶特定代谢物的生物合成的理解。
国际农业研究中心咨询小组技术咨询委员会的分析(估计 1987-88 年糖是发展中国家第十四大重要作物,总产值超过 73 亿美元。在澳大利亚,它是第三大重要作物,1994-95 年产值约为 17 亿澳元。糖在发展中国家和澳大利亚的重要性使其成为在澳大利亚国际农业研究中心 (ACIAR) 的支持下进行合作研究和开发的适当重点。澳大利亚工业以进口种质为基础,没有本土甘蔗品种,这进一步强调了国际合作对澳大利亚的重要性。澳大利亚糖业一直对支持国际科学合作持谨慎态度。自 1982 年以来,ACIAR 一直仅资助了一个关于糖的合作项目,评估菲律宾糖生产和营销的政策选择。然而,近年来,行业热情高涨,ACIAR、糖研究与发展公司和糖实验站局在 1994 年的一系列会议上讨论了促进这种合作的机会。会议决定,由于种质交换在全球甘蔗产业发展中的重要性以及最近在种质中心和交换的种质中发现新的病毒疾病,应就甘蔗种质的安全管理和国际交换举行一次研讨会。本论文集中报道的这次研讨会于 1995 年 6 月 28 日至 30 日在澳大利亚昆士兰州布里斯班附近举行。由 Barry Croft、Mac Hogarth、Peter Whittle、Bob Dodman、Eoin Wallis 和 Colin Piggin 组成的委员会组织了这次研讨会。Ted Henzell 也为研讨会的组织和运行提供了很大的帮助。来自澳大利亚(21 人)和海外(14 人)的人员出席了会议,提交了论文并参与了与甘蔗种质的收集、特性、保护、清理和交换有关的一系列问题的讨论。通过国际香蕉和大蕉改良网络对香蕉、澳大利亚诺克斯菲尔德园艺发展研究所对马铃薯、美国马里兰州贝尔茨维尔对果树的几个成功案例研究,加强了对无性繁殖物种相关问题的考虑。出色的组织、Clearview Mountain 壮观而美丽的地理位置以及参与者的热情和专业知识,所有这些都共同促进了研讨会的积极气氛。在三天内,我们回顾了甘蔗交换和检疫方面的现有知识和经验,并制定了解决主要制约因素的行动计划。成果包括基于现有知识的种质保存、交换、检疫和保存建议,以及确定未来研究和开发的优先事项,包括国际合作机会。本会议记录中介绍了研讨会的论文和成果摘要。预计这些将提供背景信息,以开发和寻求支持一系列与糖种质保存、交换和使用有关问题的合作研究、开发和培训项目。
玉米 ( Zea mays ) 是世界上最重要的粮食作物之一,全球产量最大,为满足人类对食物、动物饲料和生物燃料的需求做出了贡献。随着人口增长和环境恶化,迫切需要采取高效、创新的育种策略来开发高产抗逆的玉米品种,以保障全球粮食安全和可持续农业。CRISPR-Cas 介导的基因组编辑技术 (CRISPR-Cas (CRISPR-associated)) 已成为植物科学和作物改良的有效而有力的工具,并且可能以不同于杂交和转基因技术的方式加速作物育种。在本综述中,我们总结了 CRISPR-Cas 技术在玉米基因功能研究和新种质生成中的应用现状和前景,以提高产量、特种玉米、植物结构、应激反应、单倍体诱导和雄性不育。本文还简要回顾了玉米基因编辑和遗传转化系统的优化。最后,讨论了使用 CRISPR-Cas 技术进行玉米遗传改良所带来的挑战和新机遇。
摘要:马铃薯是一种重要的非谷类主食作物,是世界大量人口的食物来源。全基因组关联研究(GWAS)分析已成为一种有用的工具,通过揭示与感兴趣性状的显著关联来揭示重要植物性状的遗传基础。本研究旨在探索表型多样性并确定与重要花部性状相关的遗传基础。总共使用 237 个四倍体马铃薯基因型作为植物材料,并根据增强区组设计连续两年(2016 年、2017 年)进行田间试验。所研究的花部性状的方差分析反映了非常显著的基因型效应。两年的平均数据显示雌蕊长度(5.53 至 9.92 mm)、雄蕊长度(6.04 至 9.26 mm)和雄蕊上方雌蕊长度(1.31 至 4.47 mm)存在显著差异。 Pearson 相关性分析表明雌蕊长度与雄蕊长度 (r = 0.42) 以及雌蕊高于雄蕊的长度 (r = 0.28) 之间存在高度显著的正相关性。进行了主成分分析,认为前两个主成分共占 81.2% 的变异。星座图根据雄蕊和雌蕊长度将所研究的马铃薯组分为两个主要种群。总共使用了 12,720 个 SNP 标记进行标记-性状关联,发现两年内共有 15 个标记与所研究的性状显著相关。在两年内识别相同的标记有助于验证获得的标记-性状关联。所识别的显著标记反映了一些可能对马铃薯育种计划有益的假定候选基因。据我们所知,这是第一项确定重要花卉性状遗传基础的研究,可能对对这些性状的马铃薯标记辅助育种感兴趣的科学界有所帮助。
• 80% 的玉米基因组被打碎了,重复的逆转录病毒序列 • 去除重复序列后,数千万个单核苷酸多态性 • 广泛的结构变异(一个品种与另一个品种相比,缺少大量 DNA) • 一些性状(例如,种子颜色)由影响巨大的单个序列变异控制 • 大多数性状由数十到数千个序列变异控制,并与环境有复杂的相互作用