在这个技术飞速发展的时代,人工智能 (AI) 已成为一股变革力量,甚至与基因编辑和机器人技术一起被称为第四次工业革命。虽然它无疑已成为我们日常生活中越来越重要的一部分,但必须认识到,它不是一种额外的工具,而是一个带来各种挑战的复杂概念。人工智能具有相当大的潜力,在医疗保健和临床研究中都占有一席之地。在广阔的儿科领域,它是一项特别有前途的进步。作为儿科医生,我们确实目睹了基于人工智能的应用程序与我们日常临床实践和研究工作的有效整合。这些工具被用于从简单到更复杂的任务,例如诊断临床挑战性疾病、预测疾病结果、制定治疗计划、教育患者和医疗保健专业人员以及生成准确的医疗记录或科学论文。总之,人工智能在儿科的多方面应用将提高效率并改善医疗保健和研究的质量。然而,这一进步也伴随着一定的风险和威胁,包括可能导致健康差异和不准确性的偏见。因此,认识和解决技术、伦理和法律挑战以及探索临床和研究领域的好处至关重要。
光生物调节(PBM)是指光波长被细胞内光actceptor吸收的过程,从而导致信号传导途径激活细胞内生物学变化。PBM是细胞中低强度的光诱导反应的结果,与高强度激光器产生的热光实现相反。PBM已在诊所有效地用于增强伤口愈合,减轻疼痛和肌肉骨骼状况,运动损伤和牙齿应用中的疼痛和炎症。在过去的20年中,实验证据表明,在越来越多的视网膜和眼科条件下,PBM的好处。最近,眼模模型中的临床前发现已转化为诊所,结果令人鼓舞。本综述讨论了PBM在眼科中影响的临床前和临床证据,并提供了PBM在眼部条件管理中临床使用的建议。
1。儿科手术,曼彻斯特大学NHS基金会信托基金会,曼彻斯特,GBR 2。儿科手术,曼苏拉大学儿童医院,曼苏拉,埃及3.大肠手术,Torbay和South Devon NHS基金会信托基金会,Torquay,GBR 4。一般手术,皇家德文大学医疗NHS基金会信托基金会,埃克塞特,GBR 5。泌尿科,皇家沃尔夫汉普顿NHS信托基金会,沃尔夫汉普顿,GBR 6。沃特福德综合医院一般手术,沃特福德,GBR 7。普通外科,布朗克利医院,阿伯里斯特威斯,GBR 8。普通外科,赫尔大学教学医院NHS Trust,Hull,GBR 9。普通外科,卡斯尔·阿莱尼医院,开罗,Egy 10。骨科,曼苏拉大学儿童医院,曼苏拉,Egy,11。 一般手术,Zagazig大学,Zagazig,Egy 12。 一般手术,曼苏拉大学儿童医院,曼苏拉,Egy骨科,曼苏拉大学儿童医院,曼苏拉,Egy,11。一般手术,Zagazig大学,Zagazig,Egy 12。 一般手术,曼苏拉大学儿童医院,曼苏拉,Egy一般手术,Zagazig大学,Zagazig,Egy 12。一般手术,曼苏拉大学儿童医院,曼苏拉,Egy一般手术,曼苏拉大学儿童医院,曼苏拉,Egy
靶向微生物组的疗法的进步,包括益生菌,益生元和粪便微生物移植,为骨科护理提供了令人兴奋的可能性。益生菌,在发酵食品中发现的生物有益微生物,例如酸奶,开菲尔,酸菜,泡菜,泡菜和奶酪,有助于维持健康的肠道微生物组。益生元和富含纤维的食物,例如洋葱,大蒜和全谷物,滋养这些细菌,以支持其生长和活性。,这些疗法共同调节肠道健康,促进免疫弹性,降低感染风险并加速愈合 - 骨科结局的关键因素[1,2]。肠道微生物组是微生物的多样化生态系统,在维持整体健康方面起着关键作用[3]。超越消化,它会影响免疫调节,炎症控制和肌肉骨骼健康[4]。肠道健康显着影响骨科结局,包括感染控制,骨骼愈合和维持骨密度。这个生态系统中的不平衡,称为营养不良,可以损害恢复并增加感染风险[5]。通过饮食修饰,益生菌或益生元来支持肠道健康有可能提高患者预后[6]。
神经外科神经外科神经外科科学传播杂志的神经外科档案的一部分墨西哥神经外科学会神经外科档案档案神经外科档案杂志墨西哥神经系统外科学会的科学传播杂志。 A.C.,第1年,第2期(2022年6月至12月)是由墨西哥神经系统外科学会A.C.编辑的四个月出版物。 div>编辑:FiacroJiménezPonce。 div>独家使用的储备金04-2023-05121205700-102,ISSN:在进程中,均由国家版权所有研究所授予。 div>负责此数字的最后更新FiacroJiménezPonce,迈阿密47号,那不勒斯,贝尼托·华雷斯(BenitoJuárez),03810墨西哥城,CDMX,最后修改日期,2022年12月31日。
两光子激发荧光(TPEF)正在作为一种强大的成像技术,在散射培养基中具有出色的穿透力,从而可以在亚细胞水平上对生物组织的功能成像。TPEF通常用于癌症诊断,因为它可以直接观察活细胞内的代谢。该技术现已广泛用于包括眼科在内的各个医学领域。眼睛是一种复杂而细腻的器官,具有多个不同细胞类型和组织的层。尽管这种结构是视觉感知的理想选择,但它在TPEF眼成像中产生畸变。但是,自适应光学器件现在可以补偿这些像差,从而可以改善动物模型的人类疾病的眼睛的成像。眼睛是自然建造的,可以滤除有害波长,但是可以通过两光(2PH)激发来模仿这些波长,从而在诊断中使用。激光源制造的最新进展已使您可以最大程度地减少安全体内测量的暴露,同时获得足够的信号来检测功能图像,从而使TPEF成为人类应用的可行选择。本评论探讨了动物模型中波前延伸校正的最新进展以及对人类受试者使用TPEF的安全性,这两者都使TPEF成为眼科诊断的潜在强大工具。
慢性肝炎(CHB)病毒感染可导致严重的肝病,包括肝硬化和肝细胞癌。由于肝细胞中病毒式封闭的圆形DNA(CCCDNA)的持续存在,丙型肝炎病毒(HBV)的慢性性发生。CCCDNA用作病毒复制的模板,是HBV的核心,在宿主中维持病毒储存库。尽管有治疗性进步,但由于逃避免疫监视,消除CCCDNA仍然难以捉摸。本评论探讨了CCCDNA的形成和维护,突出了影响CCCDNA稳定性和病毒复制的宿主因素。它还讨论了当前的治疗策略,包括基于干扰素的疗法和核苷/核苷酸类似物,旨在抑制病毒复制。新兴疗法(例如基因编辑和分子干预措施)有望直接靶向CCCDNA。目前,研究的重点是制造针对感兴趣的宿主因素的药物,以破坏或清除病毒库。但是,未来的研究应集中于直接针对CCCDNA微型核小体的创新方法,旨在持续的病毒抑制,并有可能治愈HBV感染。
眼科中的DeepSeek-R1的标题表现:对临床决策和成本效益的评估作者David Mikhail MD(C)MSC(C)MSC(C)1,Andrew Farah MDCM(C)2,Jason Milad Bse(Jason Milad Bse(C)4票价ANTAKI MDCM FRCSC 3,5,6,7,8,Michael Balas MD 9,Marko M. Popovic MD MD MPH FRCSC 9,10,Alessandro Feo MD 10,11,Rajeev H. Muni Muni MD MD MSC FRCSC 9,12 Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada 2 Faculty of Medicine, McGill University, Montreal, Quebec, Canada 3 Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada 4 Department of Software Engineering, University of Waterloo, Waterloo, Ontario, Canada 5 Department of Ophthalmology, University of蒙特利尔,蒙特利尔,加拿大魁北克省6个中心大学d'Ophtalmologie(CUO),HôpitalMaisonneuve-Rosemont,Ciusss de l'Est-de-de-de-de-de-de-de-l'île-de-montréal,蒙特利尔,加拿大魁北克 (CHUM), Montreal, Quebec, Canada 8 Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA 9 Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario Canada 10 Retina Division, Stein and Doheny Eye Institutes, Department of Ophthalmology, University of California, Los Angeles, California, United States of America 11 Department of人类大学生物医学科学,通过Rita Levi Montalcini 4,20072。眼科中的DeepSeek-R1的标题表现:对临床决策和成本效益的评估作者David Mikhail MD(C)MSC(C)MSC(C)1,Andrew Farah MDCM(C)2,Jason Milad Bse(Jason Milad Bse(C)4票价ANTAKI MDCM FRCSC 3,5,6,7,8,Michael Balas MD 9,Marko M. Popovic MD MD MPH FRCSC 9,10,Alessandro Feo MD 10,11,Rajeev H. Muni Muni MD MD MSC FRCSC 9,12 Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada 2 Faculty of Medicine, McGill University, Montreal, Quebec, Canada 3 Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada 4 Department of Software Engineering, University of Waterloo, Waterloo, Ontario, Canada 5 Department of Ophthalmology, University of蒙特利尔,蒙特利尔,加拿大魁北克省6个中心大学d'Ophtalmologie(CUO),HôpitalMaisonneuve-Rosemont,Ciusss de l'Est-de-de-de-de-de-de-de-l'île-de-montréal,蒙特利尔,加拿大魁北克 (CHUM), Montreal, Quebec, Canada 8 Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA 9 Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario Canada 10 Retina Division, Stein and Doheny Eye Institutes, Department of Ophthalmology, University of California, Los Angeles, California, United States of America 11 Department of人类大学生物医学科学,通过Rita Levi Montalcini 4,20072。Pieve Pieve Emanuele-Milan,意大利12号科学系,圣迈克尔医院/统一健康多伦多,多伦多,多伦多,安大略省,加拿大,加拿大,加拿大,加拿大安大略省13伦敦大学学院,伦敦大学,UK 14 NIHR BIOMEDICAL BIOMEDICAL研究中心NHS Eye Hospital HospitA HospitA HospitA HospitA nhs NHS Hospital Hospital Tossict,NHS NHS EYS TOUNTION,UK DUERING DUVELINGIM of FIRC,MODINIM,蒙特利尔2900ÉdouardMontpetitBoulevard,蒙特利尔,加拿大魁北克,H3T 1J4电话:(514)252-3400Pieve Pieve Emanuele-Milan,意大利12号科学系,圣迈克尔医院/统一健康多伦多,多伦多,多伦多,安大略省,加拿大,加拿大,加拿大,加拿大安大略省13伦敦大学学院,伦敦大学,UK 14 NIHR BIOMEDICAL BIOMEDICAL研究中心NHS Eye Hospital HospitA HospitA HospitA HospitA nhs NHS Hospital Hospital Tossict,NHS NHS EYS TOUNTION,UK DUERING DUVELINGIM of FIRC,MODINIM,蒙特利尔2900ÉdouardMontpetitBoulevard,蒙特利尔,加拿大魁北克,H3T 1J4电话:(514)252-3400
抽象简介:再生肌发生在成熟的肌纤维中起着至关重要的作用,可抵消神经肌肉疾病引起的肌肉损伤或功能障碍。专门的肌源性干细胞的激活(称为卫星细胞)本质上与增殖和分化有关,然后是肌细胞融合和多核肌纤维的形成。涵盖的区域:本报告概述了卫星细胞在神经肌肉系统中的作用以及蛋白质组学分析对生物标志物发现的潜在影响,以及鉴定新的治疗靶标在肌肉疾病中的影响。本文回顾了单细胞蛋白质组学对卫星细胞,成肌细胞和心肌细胞进行系统分析的方式,可以帮助更好地理解肌纤维再生过程。专家意见:为了更好地理解神经肌肉疾病中的卫星细胞功能障碍,基于质谱的蛋白质组学是一种出色的大规模分析工具,用于对病理生理过程进行系统分析。可以通过机械/酶促解离方案通常执行优化的肌肉衍生细胞的隔离,然后在专用的流式细胞仪中进行荧光激活的细胞分类。使用标记的自由定量方法或使用串联质量标签的方法是研究干细胞在神经肌肉疾病中的病理生理作用的理想生物分析方法。
人工智能(AI)正在迅速改变各个部门,牙科也不例外。本文探讨了AI在现代牙科实践中的扩大作用,研究了其在诊断,治疗计划和患者护理中的应用。AI驱动的工具,以通过放射线图像和临床数据的分析来帮助检测龋齿,牙周疾病和口腔癌。此外,AI [1,2]算法被用于制定个性化的治疗计划,预测治疗结果并自动化某些牙科程序。尽管在数据隐私,算法偏差和监管框架方面仍然存在挑战,但AI的整合具有提高诊断准确性,提高治疗效率并最终提高牙科护理标准的潜力。本文概述了牙科中AI的当前状态,讨论了其潜在的好处和局限性,并强调了未来的研发方向。