捕获 40 Ca + 离子的量子信息科学实验需要波长为 729 nm 的窄线宽激光器来驱动 4 2 S 1 / 2 和 3 2 D 5 / 2 之间的量子比特跃迁。本文介绍了一种钛宝石激光器,该激光器使用 Pound-Drever-Hall 技术将频率稳定到波长为 729 nm 的参考腔。激光线宽是通过与其他频率稳定激光器的拍频测量和对单个捕获 40 Ca + 离子的 Ramsey 实验来测量的。最窄的测量线宽 (FWHM) 是通过拍频测量获得的,在测量时间为 1 s 时为 4.2(17) Hz,代表了钛宝石激光器线宽的上限。在参考腔下方安装隔振板后实现了这个最窄的线宽。对已安装的光纤噪声消除和激光强度稳定装置的分析表明,光纤和激光强度噪声不会限制最窄的测量线宽。还利用其他频率稳定激光器的拍频测量来获得稳定激光器频率漂移的值,测量结果为 -371(3) mHz/s。
会议报道:从科幻到现实,脑机接口如何连接 AI 与人类智慧? “《黑客帝国》在某种意义上描绘了脑机接口的终极目标:向大脑输入一个完整 的虚拟外部环境并与之双向交互。”上海科技大学生物医学工程学院常任轨助理 教授、计算认知与转化神经科学实验室主任李远宁说道。 近日,由天桥脑科学研究院(中国)主办的“从科幻到现实——人类智能如何与 人工智能融合?”主题活动在上海图书馆东馆举行。 活动上,李远宁与知名科幻作家,银河奖、全球华语星云奖金奖得主江波展开了 跨越科幻与科学的对谈,将脑机接口( Brain Computer Interface , BCI )这项从小 说走向现实、不断引爆学界和产业界热点的技术进行了生动演绎,探索脑机接口 与 AI 融合的无限可能,并客观阐释了从令人遐想的突破性个例到广泛应用的距 离。 脑科学是人类所知甚少的“自然科学最后一块疆域”,也是科幻作品经久不衰的 灵感来源。今年以来,天桥脑科学研究院(中国)发力 AI for Brain Science ,鼓励 AI 和脑科学这两个“黑匣子”互相启发、互相破译。 一方面,研究院已组织了六场 AI for Brain Science 学术会议,促进 AI 科学家、神 经科学家、临床医生、产业界专家和高校年轻学生学者同台共话,分享 AI for Brain Science 相关基础研究和健康应用,系列会议大众总观看 52 万人次,参会领域专 家 800 余人;另一方面,研究院也积极组织“ AI 问脑”系列科普会议,邀请 AI 科 学家、脑科学家展开跨界对谈,激发公众对 AI for Brain Science 的兴趣和探索。 点击此处阅读原文
1994 年,美国生物特征识别联盟领导层 1 向自动人机识别 (“生物特征识别”) 社区提出了一系列问题,这些问题围绕着性能测试中测量的可重复性和再现性问题。尽管我们在理解方面取得了重大进展,但这些问题尚未完全解决。本文在更广泛的科学实验和 NIST 数据评估和报告传统背景下讨论了我们当前对可重复性和再现性的方法。我们讨论了 Duhem-Quine 的测试整体论论题、Churchill Eisenhart 的“统计控制”概念、NIST 和 ISO 对实验室测量不确定性的方法、测试结果与系统操作员评估的“性能”之间当前的脱节(缺乏归纳相关性),以及我们当前生物特征识别测试程序中统计控制和不确定性评估的必要性。我们说明了测量不确定度在技术、场景和操作测试中是如何体现的,并主张超越 ISO/IEC“测量不确定度表示指南”中定义的“覆盖”间隔的计算,全面应用不确定度评估的概念。
气候行动是实现可持续发展的关键要素之一。在高空测量上述大气参数可以做出更好的预测。通过使用纳米卫星,可以记录这些参数,甚至可以计算出来。实时数据可以快速提供给用户进行进一步分析。CANSAT 可能是一种纳米卫星,集成在小罐子的数量和形状中。我们的挑战是将卫星中发现的所有主要子系统(如电源系统、传感器和通信系统)装入这个最小体积中。然后,CANSAT 通过火箭发射到几百米的高度,进行科学实验,并使用降落伞安全着陆。Arduino 是一个开源、易于使用的硬件和软件。LoRa SX1278 Ra-02 模块用作从太空到地面站通信的发射器和接收器。记录的数据还存储在 SD 卡模块中。CANSAT 必须开发成能够在几百米的空中维持一段时间。它使用 9v 电源。整个系统的设计目标是确保负载不超过 500 克。CANSAT 系统中使用的模块非常灵敏,可以监测大气参数的最小变化。
研究材料动力学对于预测各种条件下的降解,失败和特定行为至关重要,实现了有效的材料设计,增强的表现以及推动材料科学的创新。显微镜技术已经有效地提高了体验,以记录实验进展过程中材料的动态演变。然而,显微镜图像的实验观察是固有的偏见,以推动后续分析到可观察的行为并排除在未观察到的情况下的行为。为了解决这个问题,我们设计了一个分析框架 - 整合了深层生成模型,以合成在现实的实验条件下可能出现的假设材料状态。这种方法可以使蒙特卡洛模拟由动态进展驱动的物质状态变化,反映出更广泛和预测的动态行为。应用于各种显微镜图像数据集,我们的框架有效地发现了材料科学实验中隐藏的物理性质。此外,这项研究支持向数据驱动的方法论转变,并主张采用深度学习技术来促进材料科学领域的创新研究实践。
1994 年,美国生物特征识别联盟领导层 1 向自动人机识别(“生物特征识别”)社区提出了一系列问题,这些问题围绕着性能测试中测量的可重复性和再现性问题。尽管我们在理解方面取得了重大进展,但这些问题尚未完全解决。本文在更广泛的科学实验背景和 NIST 数据评估和报告传统中讨论了我们当前对可重复性和再现性的方法。我们讨论了关于测试整体论的 Duhem-Quine 论题、Churchill Eisenhart 的“统计控制”概念、NIST 和 ISO 对实验室测量不确定性的方法、测试结果与系统操作员评估的“性能”之间当前的脱节(缺乏归纳相关性),以及我们当前生物特征识别测试程序中对统计控制和不确定性评估的需求。我们说明了测量不确定性在技术、场景和操作测试中是如何体现的,并主张超越 ISO/IEC“测量不确定性表达指南”中定义的“覆盖”间隔的计算,全面应用不确定性评估的概念。
摘要:我们总结了在“太空冷原子”虚拟社区研讨会上关于冷原子技术现状、它们在太空部署所带来的未来科学和社会机遇以及在太空运行冷原子之前所需的发展情况的讨论。讨论的冷原子技术包括原子钟、量子重力仪和加速度计以及原子干涉仪。预期应用包括计量学、大地测量学和由于气候变化等原因的地球质量变化测量,以及等效原理测试、暗物质搜索、引力波测量和量子力学测试等基础科学实验。我们回顾了冷原子技术的现状,概述了其太空资格的要求,包括发展路径和相应的技术里程碑,并确定了可能的探路者任务,为充分利用太空冷原子的潜力铺平道路。最后,我们提出了实现这些目标的可能路线图的初稿,并提议由感兴趣的冷原子、地球观测、基础物理学和其他潜在科学用户社区以及欧空局和国家空间和研究资助机构进行讨论。
n此版本,我们将重点放在肥料上,以及继续采用新技术的重要性,例如受保护的尿素,同时不断地关注良好土壤健康,养分管理,liming,有效的和平衡的有机含量和化学货物和化学费用的核心原理。发展农场管理和草生产的这一重要方面对于我们的农业和粮食生产系统的未来生产和可持续性至关重要。teagasc继续在基于严格的科学实验以及对农民和更广泛行业的依据建议中,在这些主题的独立和强大的科学和建议的发展上进行大量投资。Teagasc强烈主张将受保护的尿素用作氮源。在有效传播的情况下,没有产量损失,对农民和环境有很大的好处。在此版本中,我们不仅关注受保护尿素的潜在好处,而且还要突出并探讨新的Fortilis ER产品可以向农民带来的潜在问题和挑战。因此,我们敦促您选择受保护的尿素,并适当地将其用于您的盈利能力和我们所有的未来。
计算方法是我们除了科学实验之外探索复杂生物系统特性的最有效工具。由于数字硅计算机的速度已达到极限,因此进展正在放缓。使用完全不同架构的其他类型的计算,包括神经形态计算和量子计算,有望在速度和效率方面取得突破。量子计算利用量子系统的相干性和叠加性来并行探索许多可能的计算路径。这为解决某些类型的计算问题提供了一条从根本上更有效的途径,包括与生物模拟相关的几个问题。特别是,优化问题(凸和非凸)在许多生物模型中都有出现,包括蛋白质折叠和分子动力学。早期的量子计算机将很小,让人想起数字硅计算的早期。了解如何利用第一代量子硬件对于在生物模拟和下一代量子计算机的开发方面取得进展至关重要。本评论概述了量子计算的现状和未来前景,并提供了如何以及在何处应用它来加速生物模拟中的瓶颈的一些指示。
计算方法是我们除了科学实验之外探索复杂生物系统特性的最有效工具。由于数字硅片计算机的速度已达到极限,因此进展正在放缓。其他类型的计算采用了截然不同的架构,包括神经形态计算和量子计算,有望在速度和效率上取得突破。量子计算利用量子系统的相干性和叠加性来并行探索许多可能的计算路径。这为解决某些类型的计算问题(包括与生物模拟相关的几个问题)提供了一条从根本上更有效的途径。特别是,优化问题(包括凸优化和非凸优化)在许多生物模型中都具有特色,包括蛋白质折叠和分子动力学。早期的量子计算机规模会很小,让人回想起数字硅片计算的早期。了解如何利用第一代量子硬件对于生物模拟和下一代量子计算机的开发都至关重要。本综述概述了量子计算的当前最新进展和未来前景,并提供了如何以及在何处应用量子计算来加速生物模拟瓶颈的一些指示。