我们提出了一种名为NTRU + PKE的新的基于NTRU的公钥加密(PKE)方案,该方案有效地纳入了PKE(称为FO PKE)的Fujisaki-Okamoto转换,以实现量子随机Oracle模型(QROM)中选择选择的ciphertext Security。虽然NIST PQC标准化过程中的首轮候选人Ntruencrypt被证明是随机Oracle模型(ROM)中的ciphertext secure,但它缺乏QROM的相应安全性证明。我们的工作扩展了Kim和Park于2023年提出的最近的ACWC 2转换的能力,证明了ACWC 2转化方案可以作为应用FO PKE的足够基础。具体来说,我们表明ACWC 2转化方案达到了(弱)γ-传播,这是构建Ind -CCA安全PKE方案的重要属性。此外,我们提供了QROM中FO PKE安全性的第一个证明。最后,我们表明可以将FO PKE进一步优化为更有效的转换,即FO PKE,从而消除了在解密期间重新掺入的需求。通过使用适当的参数化实例化ACWC 2转化方案,我们构造了NTRU + PKE,该方案支持256位消息加密。我们的实现结果表明,在大约180位的安全级别上,NTRU + PKE的速度比K YBER + AES-256-GCM快2倍。
鉴于当地的哈密顿量,确定其基态的纠缠结构有多困难?我们表明,即使一个人只是试图决定基态是否是vs vs vs nake nake纠缠的尺寸,我们也表明这个问题在计算上是可悲的。我们通过在公钥环境中构建强大形式的伪enentangrement来证明这一点,在该环境中,用于准备国家的电路是公共知识。特别是,我们构建了两个量子电路家族,这些量子回路与近距离纠缠的状态相比,但在学习误差(LWE)假设下,对电路的经典描述仍无法区分。电路的难以区分,然后使我们能够将自己的建筑转化为哈密顿人。我们的工作打开了哈密顿复杂性的新方向,例如,学习某些物质阶段是否难以学习。
量子公钥加密由 Gottesman [ 11 ] 和 Kawachi 等人 [ 14 ] 提出,作为标准公钥加密概念的推广,允许公钥成为量子态。更具体地说,此原语允许 Alice 在本地生成状态 | pk ⟩ 的(多份)副本并将其上传到某个证书颁发机构。稍后,Bob 可以查询证书颁发机构以获取 | pk ⟩ 的副本并使用它来向 Alice 发送私人消息。与经典设置类似,量子 PKE 假设证书颁发机构向 Bob 提供了正确的信息(在本例中为状态 | pk ⟩ ),但不对证书颁发机构的行为做任何假设,证书颁发机构可以尝试以任意方式获取 Alice 的密钥。然而,与经典情况相反,由于量子态通常无法复制,如果 Alice 想要与多方建立安全通道,就必须假设她上传了 | pk ⟩ 的多份副本。尽管存在这一局限性,量子 PKE 仍然是一个有趣的研究对象:(i)由于使用了量子信息,量子 PKE 可能只需要比标准(经典)PKE 更弱的计算假设即可实现,甚至可以无条件实现。(ii)与需要更多交互的量子密钥分发 (QKD) 协议 [ 2 ] 相比,量子 PKE 保留了经典 PKE 的交互模式,从而可以实现轮次最优安全通信。然而,量子 PKE 的现状留下了许多关于构建此原语所需最小假设的问题。现有提案 [ 14 ] 依赖于临时假设,这些假设对于经典 PKE 来说似乎不够,但没有给出此原语的清晰复杂性理论表征。甚至还有关于无条件安全的量子 PKE [ 11 ] 的提案,尽管没有安全性证明。我们注意到,推测量子 PKE 的无条件安全性至少是合理的——毕竟,QKD 确实实现了信息论安全性(假设经过认证的通道)。
2024年10月18日 — ・防卫省秘书局卫生督察、防卫政策局局长、防卫装备局局长(以下简称“国防部指定中止权”) ...”)就是这样。在批准之前提交给请求者...
摘要 — 区块链技术可确保关键应用(包括具有嵌入式系统的物联网)的可追溯性、透明度和冗余性。然而,对公钥加密 (PKC) 的依赖使区块链容易受到量子计算威胁。本文通过将后量子密码 (PQC) 集成到区块链框架中,解决了对量子安全区块链解决方案的迫切需求。利用 NIST PQC 标准化过程中的算法,我们旨在加强区块链的安全性和弹性,特别是对于物联网和嵌入式系统。尽管 PQC 非常重要,但它在针对嵌入式环境定制的区块链系统中的实现仍未得到充分探索。我们提出了一种量子安全区块链架构,评估了各种 PQC 原语并通过 Falcon 的公钥恢复等技术优化交易规模,将交易规模减少了 17%。我们的分析表明 Falcon-512 是嵌入式环境中量子安全区块链最合适的算法,而 XMSS 是一种可行的有状态替代方案。然而,对于嵌入式设备,Dilithium 的每秒交易数 (TPS) 比 Falcon 更高,这主要是因为 Falcon 在 ARM CPU 上的签名性能较慢。这凸显了签名时间是 PQC 集成到嵌入式区块链中的关键限制因素。此外,我们将智能合约功能集成到量子安全区块链中,评估 PQC 对智能合约认证的影响。我们的研究结果证明了在嵌入式系统中部署量子安全区块链解决方案的可行性和实用性,为强大且面向未来的物联网应用铺平了道路。
(C. Veeramani博士)秘书CC:1。政府首席秘书。泰米尔纳德邦,秘书处,秘书处,钦奈600 009。2。政府首席秘书。泰米尔纳德邦,财务部,秘书处,钦奈600 009。
摘要:密码学在计算机出现之前就已经存在。它涵盖了各种旨在保护信息的技术,无论是静止信息还是传输信息。对称密钥密码学包括对称密钥,其具有加密和解码通信的双重目的。已提供公钥/私钥对(也称为非对称密钥)的描述。此类对可归类为秘密/公钥对,其中私钥保持机密,而公钥可供所有相关方访问以进行通信和信息交换。私钥和公钥密码学的领域多种多样。最近,美国国家标准与技术研究所 (NIST) 认可了四种后量子密码系统。本文对密码学进行了全面调查,研究了复杂的密码系统对我们现有网络的影响。
密码学的核心组成部分之一是密钥的使用。密钥是算法中用于加密和解密消息的信息。密钥必须在发送者和接收者之间保密,以确保只有授权方才能阅读消息。密码系统主要有两种类型:对称和非对称。对称密码学使用相同的密钥进行加密和解密,而非对称密码学(也称为公钥密码学)使用一对密钥 - 一个公钥和一个私钥。公钥用于加密数据,私钥用于解密数据。