美国国家运输安全委员会认定,此次事故的可能原因是航空业和联邦航空管理局未能向机组人员提供与容易导致机身结冰的条件下的起飞延误相适应的程序、要求和标准,以及机组人员在没有明确保证飞机在除冰后暴露于降水 35 分钟后机翼没有积冰的情况下决定起飞。机翼上的冰污染导致飞机在起飞后发生气动失速和失控。造成事故的原因是机组人员使用的程序不当以及他们之间协调不充分,导致起飞时空速低于规定空速。
美国国家运输安全委员会认定,此次事故的可能原因是航空业和联邦航空管理局未能向机组人员提供与容易导致机身结冰的条件下起飞延误相适应的程序、要求和标准,以及机组人员在没有明确保证飞机在除冰后暴露于降水 35 分钟后机翼没有积冰的情况下决定起飞。机翼上的冰污染导致飞机在起飞后发生气动失速和失控。造成事故的原因是机组人员使用的程序不当,以及他们之间协调不充分,导致起飞时空速低于规定空速。
美国国家运输安全委员会认定,此次事故的可能原因是航空业和联邦航空管理局未能向机组人员提供与容易导致机身结冰的条件下的起飞延误相适应的程序、要求和标准,以及机组人员在没有明确保证飞机在除冰后暴露于降水 35 分钟后机翼没有积冰的情况下决定起飞。机翼上的冰污染导致飞机在起飞后发生气动失速和失控。造成事故的原因是机组人员使用的程序不当以及他们之间协调不充分,导致起飞时空速低于规定空速。
美国国家运输安全委员会认定,此次事故的可能原因是航空业和联邦航空管理局未能向机组人员提供与容易导致机身结冰的条件下起飞延误相适应的程序、要求和标准,以及机组人员在没有明确保证飞机在除冰后暴露于降水 35 分钟后机翼没有积冰的情况下决定起飞。机翼上的冰污染导致飞机在起飞后发生气动失速和失控。造成事故的原因是机组人员使用的程序不当,以及他们之间协调不充分,导致起飞时空速低于规定空速。
美国国家运输安全委员会认定,此次事故的可能原因是航空业和联邦航空管理局未能向机组人员提供与容易导致机身结冰的条件下起飞延误相适应的程序、要求和标准,以及机组人员在没有明确保证飞机在除冰后暴露于降水 35 分钟后机翼没有积冰的情况下决定起飞。机翼上的冰污染导致飞机在起飞后发生气动失速和失控。造成事故的原因是机组人员使用的程序不当,以及他们之间协调不充分,导致起飞时空速低于规定空速。
通过在加拿大进行的实验,现在有机会避免这种停机时间。实验表明,使用直升机和热水(不含化学品)可以为涡轮叶片除冰。热水喷洒在叶片上的方式与为飞机除冰以去除积冰的方式相同 - 这是一种简单而有效的方法,Alpine Helicopter AB 看到了进一步开发以加快这一过程的机会。Alpine 主动开发了风力涡轮机叶片除冰溶液设备的原型,与加拿大方法相比,其效果明显更快。该原型于 2013 年秋季向 Skellefteå Kraft AB 的操作员进行了演示。虽然他们对这项技术印象深刻,但该方法需要进一步开发。
柯林斯航空继续走在冰检测技术的前沿。我们的磁致伸缩冰检测技术提供灵活、坚固的设计,可在各种结冰环境中检测冰。该技术能够检测到小至 0.001 英寸的积冰,同时对各种类型的污染不敏感。我们的传感元件具有高收集效率,相对于飞机表面具有出色的灵敏度。针对冰检测和结冰严重程度的优化设定点可在早期检测和最小化防冰操作之间取得平衡。冰检测器的结冰严重程度和液态水含量测量值可提供给防冰控制器,以调节和优化防冰系统的控制。
冰层积聚是一种普遍存在的自然现象,对广泛的社会系统产生了严重而灾难性的影响。以前对防/除冰技术的研究主要集中在温和的实验室条件下,由于使用寿命短,实际适用性有限。因此,迫切需要开发能够承受复杂环境条件的耐用防/除冰技术。在这项研究中,我们成功配制了一种基于石墨烯的疏水涂层。为了规避与环境不友好的有机溶剂相关的挑战,我们使用石墨烯水浆作为基础材料,随后加入聚乙烯醇-水溶液。将所得溶液进行硅氧烷脲交联聚合物的原位聚合,得到所需的涂层溶液。经过溶液喷涂和干燥过程后,最终获得的产品是疏水导电石墨烯 (HCG) 硅氧烷涂层。 HCG硅氧烷涂层的电导率为66 S/m,仅需10秒即可融化冰滴,而传统涂层则需要20至500秒才能完成相同任务。在芬兰北极圈内的一座高山上进行了整个冬季的综合现场测试,结果表明,该涂层在约310 W/m 2 的功率下具有出色的防冰性能。此外,该涂层在约570 W/m 2 的功率下表现出令人满意的除冰性能,可在约10分钟内成功清除积冰。在整个现场测试过程中,温度经常骤降到20℃,同时风速高达12米/秒。材料特性表明,涂层表面的微纳米结构产生良好的疏水行为,这主要归因于亲水和疏水相互作用引起的相分离。此外,聚乙烯醇分子链和原位聚合硅氧烷脲形成的半互穿结构确保了涂层的强度。© 2023 越南国立大学,河内。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
申请人应知道,联邦航空管理局已发布备忘录,指出在飞机、滑翔机和飞艇外部安装乙烯基覆盖收缩包装存在安全问题,而油漆和除冰靴等其他外部装饰则不存在这些问题。这些问题包括重大甚至灾难性的危险,因此不接受获得联邦航空管理局现场批准的安装。只有联邦航空管理局 (FAA) 型号合格证 (TC)、修订型号合格证 (ATC) 和补充型号合格证 (STC) 才适用于此类安装。本备忘录不适用于放置在机身或尾翼有限区域上的乙烯基贴花或徽标。以下是安装乙烯基收缩包装覆盖物的安全问题,申请人必须对任何 TC/ATC/STC 申请进行评估:1. 未经适当的工程评估和/或测试,不得将乙烯基收缩包装放置在任何控制面或控制面突出部上:a.不考虑对颤振特性的影响(无论表面是否质量平衡)以及 b. 安装会改变相邻表面之间现有的间隙(有负载和无负载)。2. 切割乙烯基板以使其适合时划伤飞机蒙皮,这会导致裂缝,尤其是在增压飞机中。3. 堵塞燃油通风口、静压孔、铰链、排水孔等,使其无法工作或改变静压孔上的气流。4. 使用喷灯的明火涂抹材料。这对油箱和通风口、敏感天线,尤其是复合材料部件来说是一个问题,因为复合材料部件的固化温度远低于喷灯的温度。5. 遮盖必需的外部飞机标记和紧急出口。6. 乙烯基板在表面或旋转部件上的附着力丧失,卡住控制面或损坏发动机。7. 静电积聚导致油箱内或周围放电,并造成无线电/导航干扰。 8. 窗户和挡风玻璃上贴有透明乙烯基,影响飞行员的视线。9. 清除关键表面积冰的影响。10. 材料的可燃性,包括雷击,尤其是发动机排气口附近和发动机短舱周围。可燃性测试样本应从涂有乙烯基收缩包装的发动机罩/短舱上制作。11. 包装被雨水或冰雹剥落。12. 结构和外壳上的裂缝和腐蚀的遮盖。13. 安装有水龙头的乙烯基收缩膜的使用寿命。强制拆除前需要多长时间。14. 除冰液对薄膜的影响。政策备忘录可应要求提供。