自拜登政府上台以来,美国已承诺向乌克兰提供超过 509 亿美元的安全援助,其中包括自 2022 年 2 月 24 日俄罗斯无端野蛮入侵以来的超过 502 亿美元。防空 • 一套爱国者防空炮台和弹药; • 12 套国家先进地对空导弹系统 (NASAMS) 和弹药; • HAWK 防空系统和弹药; • 用于防空的 AIM-7、RIM-7 和 AIM-9M 导弹; • 2,000 多枚毒刺防空导弹; • 复仇者防空系统; • VAMPIRE 反无人机系统 (c-UAS) 和弹药; • c-UAS 炮车和弹药; • 移动式 c-UAS 激光制导火箭系统; • 其他 c-UAS 设备; • 高射炮和弹药;• 防空系统组件;• 将西方发射器、导弹和雷达与乌克兰系统整合的设备;• 支持和维持乌克兰现有防空能力的设备;• 保护关键国家基础设施的设备;以及• 21 部空中监视雷达。
自拜登政府上台以来,美国已承诺向乌克兰提供超过 566 亿美元的安全援助,其中包括自 2022 年 2 月 24 日俄罗斯无端野蛮入侵以来提供的约 559 亿美元。防空 • 两个爱国者防空炮台和弹药; • 12 个国家先进地对空导弹系统 (NASAMS) 和弹药; • HAWK 防空系统和弹药; • 用于防空的 AIM-7、RIM-7 和 AIM-9M 导弹; • 2,000 多枚毒刺防空导弹; • 复仇者防空系统; • VAMPIRE 反无人机系统 (c-UAS) 和弹药; • c-UAS 枪车和弹药; • 移动式 c-UAS 激光制导火箭系统; • 其他 c-UAS 设备; • 高射炮和弹药; • 防空系统组件; • 将西方的发射器、导弹和雷达与乌克兰的系统整合在一起的设备; • 支持和维持乌克兰现有防空能力的设备; • 保护关键国家基础设施的设备;以及 • 21 部空中监视雷达。
16.Ah.?rac?层状撕裂是母材或基础金属因全厚度应变而产生的分离。这些应变通常是由高约束条件下的焊接金属收缩引起的。本手册提供了控制船舶和海上平台建造中使用的钢种的层状撕裂的具体建议。对层状撕裂特征和机理的简要描述表明,要发生层状撕裂,必须存在材料敏感性、焊接程序和接头设计的关键组合,以允许产生高全厚度应变。广泛用于船舶和海上结构的 T 形接头和角接头是最容易发生层状撕裂的两种基本接头结构。然而,层状撕裂在船舶建造中极为罕见。层状撕裂问题在移动式和固定式海上钻井平台中更为严重,这些平台使用厚板,且具有高度受限的 T 形和十字形接头。
16.Ah.?rac?层状撕裂是母材或基础金属因全厚度应变而产生的分离。这些应变通常是由高约束条件下的焊接金属收缩引起的。本手册提供了控制船舶和海上平台建造中使用的钢种的层状撕裂的具体建议。对层状撕裂特征和机理的简要描述表明,要发生层状撕裂,必须存在材料敏感性、焊接程序和接头设计的关键组合,以允许产生高全厚度应变。广泛用于船舶和海上结构的 T 形接头和角接头是最容易发生层状撕裂的两种基本接头结构。然而,层状撕裂在船舶建造中极为罕见。层状撕裂问题在移动式和固定式海上钻井平台中更为严重,这些平台使用厚板,且具有高度受限的 T 形和十字形接头。
固体氧化物燃料电池 (SOFC) 的独特特性促使其被广泛用于各种应用,从便携式、移动式和微型热电联产(500 W 至 20 kW)到分布式发电(B 100 kW –5 MW)和中央公用事业规模(4 100 MW)的更大规模固定电源。SOFC 技术具有吸引力,包括高电效率、高品位废热、燃料灵活性、低排放、功率可扩展性以及在实现高产量时具有低单位资本成本潜力。SOFC 的高工作温度使其能够产生不同等级的废热,然后可以回收用于工艺加热、通过燃气轮机集成增加功率或用于可出口产品的多联产(例如,热能、冷却、功率或燃料)。废热的有效利用对整个系统的效率、经济性和环境排放有重大影响。这些特性加速了 SOFC 技术的发展,旨在取代传统的基于燃烧的发电
2000 财政年度,美国国防部 (DoD) 遗产计划办公室为南卡罗来纳州克莱姆森大学雷达鸟类学实验室 (CUROL) 提供了资金,以开发一种能够探测机场鸟类的鸟类雷达系统,从而减少鸟击的发生。最初的 BirdRad 系统旨在成为一种廉价的移动式鸟类雷达。它包括一个低成本的商用海事雷达,配备 4 度波束宽度抛物面天线(以获得更好的高度分辨率)和一台台式个人计算机,用于在图形文件中显示和捕获雷达图像。CUROL 建造了五个 BirdRad 系统,部署在三个海军、一个海军陆战队和一个空军基地。虽然 BirdRad 在探测零到六海里范围内的鸟类方面非常有效,但它有几个局限性。主要是来自静止物体(“地面杂波”)的雷达回波会遮挡移动目标;从屏幕截图中提取目标轨迹太慢并且需要大量劳动力,无法追踪许多种类的鸟类;并且很难将屏幕上的目标与周围的景观联系起来。
维护、排除故障、大修、修理、改装和检查重型移动设备、各种支持设备和专用车辆,例如:加油车、加油设备、碰撞/结构消防设备和泵车、叉车、物料搬运、飞机货物装载机、飞机和设备牵引车、大型跑道除雪车、飞机除冰设备、清扫车、推土机、移动式起重机、平地机、重型建筑和土方车辆、反铲挖土机、前端装载机、挖掘机、挖沟机和战术/装甲防护车辆。设备可能是商用或军用设计,采用柴油、汽油、电动、混合动力或其他替代燃料动力,可能有多个引擎。这项工作需要了解重型机械、发动机、零件和系统的工作原理;能够检测故障项目,确定故障原因,并确定最佳维修方法;并且能够组装、拆卸、修理、重建或改装组件和各种互连系统。维修包括:集成的电气、电子、空气、燃料和液压系统;复杂的最先进的电气和电子系统,需要专门的扫描/诊断设备来识别故障或确定标准和计算机控制组件的更换。
使用移动式驱动模拟器进行了一个型型人类实验,其中40名参与者,由26名男性和14个女性组成,平均年龄为34.33岁。使用了受试者间的设计,而参与者的人口统计学的分配在群体之间达到了很好的平衡。参与者首先经历了人类驱动的基线,然后是由同一人类驾驶员或AV Conloller进行的其他动作。然后,要求参与者将驾驶行为分类为人类或自动化,并在1到5的李克特量表上提供信心评级。测试了两种类型的控制器:标准模型预测控制器(MPC)和一个名为drividoc的控制器(从视觉从视觉驱动到可区分的最佳控制),以前在人类驾驶示范中训练了端到端模仿学习与MPC结合使用的人类驱动示范。此控制器会根据从相机图像中提取的驾驶上下文自动调整MPC成本函数PA-RAMETER。有关drividoc的更多详细信息可以在[1]中找到。
如今,人们对电池储能系统 (BESS) 的了解迅速增长,并因此在电网中得到广泛应用。组装在集装箱中的公用事业规模电池可以在电网中运输。尽管具有众多好处,但这一特点却被忽视了。在以前的研究中,电池移动是基于特定的传输方法(例如卡车或火车)建模的。因此,通过改变电池的运输方法,应该重新建模问题,而且不可能通过结合两种传输方法来安排电池移动。在此背景下,本文提出了一种配电网中的新电池移动调度方法。为此,除了确定总线位置外,还将确定任何运行时间段的最佳充电或放电功率。在所提出的模型中,只有总线之间的距离很重要,而电池的传输方式并不重要。因此,可以使用一种传输方法(例如卡车)或两种方法(卡车和火车)的组合来执行电池传输。通过保持模型的线性结构,还可以计算电池的无功功率贡献、网络的功率损耗和总线电压。这保证了该公式在实际配电网中的实际应用。在测试系统上实施该模型的结果表明,移动式 BESS 相对于固定式装置具有明显的优势。
NTESS 通过交付大量武器部件和系统,有效地支持了多个武器现代化计划,代表了近年来最大、最复杂的设计、开发和鉴定工作范围。NTESS 完成了 W80-4 预生产工程门审查,获得 NNSA 授权进入第 6.4 阶段。NTESS 支撑 W87-1 计划进入第 6.3 阶段,并完成了 W87-1 概念设计审查。NTESS 完成了第 28 周期年度评估,确保了对库存的可靠性和安全性的信心。NTESS 完成了 W88 改造(ALT)940 计划鉴定工程发布(QER),提前一个月交付了第一个生产单元(FPU),并展示了电缆生产方面积极主动的技术和计划领导能力。NTESS 增加了战争储备部件的产量,同时履行了所有有限寿命部件承诺。 NTESS 未能满足移动式 Guai-dian 传输器的成本、进度和技术性能基准要求。NTESS 还在联合测试组装开发计划中遇到问题,并未能提供 W87-1 计划的关键中间交付成果。