电加热系统。适用于 AS3251 熨平板和 AS4251 熨平板。电加热系统配有安装在拖拉机上的发电机、可更换的加热元件和操作员友好的控件,可提供操作员友好的环境。该系统配备了自动调节中央、每个移动板和螺栓固定延伸件的平滑板和夯杆温度的功能,最大长度可达 7500 毫米。在低发动机转速下可快速预热熨平板,实现安静运行。重型、用户友好的熨平板加热控制单元带有自诊断控制,位于机器后部,方便地勤人员使用。
传感器采用 MEMS 技术(微机电系统),本质上是一个硅电容器。电容器由两个硅板/表面组成。一个板是固定的,而另一个是可移动的(分别是下图中所示的绿色板和灰色板)。固定表面由电极覆盖,使其具有导电性,并布满了允许声音通过的声孔。可移动板能够移动,因为它只粘合在其结构的一侧。通风孔允许后室中压缩的空气流出,从而允许膜向后移动。腔室允许膜在内部移动,但与封装创建的腔室结合也会影响麦克风在频率响应和 SNR 方面的声学性能。
近年来,人们对用于入耳式应用的 MEMS 扬声器的兴趣日益浓厚,在声压级、失真和外形尺寸方面取得了令人鼓舞的成果 [1–3]。基于薄膜 PZT 的 MEMS 扬声器有望取代目前用于小型可穿戴设备的笨重扬声器。减小扬声器尺寸并使其适应微制造工艺可以进一步降低功耗并将其集成到更小的设备中,如智能手表和真正的无线耳机。在本文中,我们介绍了 [4] 中所示的扬声器的测量结果,并将结果与 [5] 中提出的集总参数模型和有限元模型进行的仿真结果进行了比较。在使用集总参数和有限元模型进行的仿真中,扬声器产生的声压级超过 120 dB SPL,频率低至 100 Hz。扬声器的响应使用 GRAS RA0045 耳塞耦合器测量,符合国际 60318-4 (IEC) 标准。扬声器的后腔未加载,装置放置在消声 GRAS 室内。设计并 3D 打印了一个适配器,以使扬声器的移动板适应耳塞耦合器的输入。还评估了由于扬声器中使用的薄膜压电材料的复杂非线性行为而导致的总谐波失真 (THD)。实验结果与实际结果之间的差异