- 选择“寄存器”按钮,然后选择“马里兰州”。- 输入您的名字,姓氏,电子邮件地址和密码,阅读并同意其服务条款,然后选择“注册”按钮。- 检查您的姓名和电子邮件地址是否正确,并输入手机号码,您可以在其中收到验证代码。在选择“发送代码”之前,请确保手机号码正确。- 输入6位验证代码,然后选择“继续”。输入6位身份验证代码,然后选择“继续”。从下拉菜单中选择“您如何找到有关Myir Mobile”的答案,然后单击“继续”。
报告文档页面表格批准OMB 编号 0704-0188 估计此信息收集的公共报告负担每份回应平均需要 1 小时,其中包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估算或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至华盛顿总部服务处、信息运营和报告理事会,地址:1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,以及管理和预算办公室、文书工作减少项目(0704-0188),华盛顿特区 20503。1. 仅供机构使用(留空)2. 报告日期:2011 年 6 月3. 报告类型和涵盖日期:硕士论文4. 标题和副标题:比较超高频跟踪系统与移动用户目标系统的能力和性能
Okta Verify 是一款移动应用程序,可在您不使用 CAC 的情况下访问海军人力资源系统时验证您的身份。登录支持通过 MyNavy HR CAC 免费帐户访问的海军人力资源系统时,海军人力资源系统会向您移动设备上的 Okta Verify 应用程序发送请求,以确认您正在尝试登录(推送通知)。Okta Verify 应用程序还支持通过一次性密码 (OTP)(一个 6 位代码)进行身份验证。
图1:Airborne Snow Observatories, Inc. 使用其 RIEGL VQ-1560 II-S 测量科罗拉多州 14,265 英尺 Quandary Peak 的积雪深度。(加利福尼亚州马莫斯湖)Airborne Snow Observatories, Inc. 刚刚接收了北美首批尖端 RIEGL VQ-1560 II-S 机载激光扫描仪之一,正如 NASA 的 ASO 项目在 2013 年率先使用 RIEGL 的第一台双激光扫描仪 LMS-Q1560 一样。这款新型 LiDAR 系统具有双倍的激光功率和高脉冲频率,将使 ASO Inc. 能够更有效地实现其需求,以独特的方式测量广阔的山区盆地的雪水当量。ASO Inc. 是一家公益公司,由 NASA 喷气推进实验室通过技术转让创建,旨在继续并扩大 ASO 业务雪况测绘和径流预报范围,覆盖全球山区。通过结合 RIEGL LIDAR、成像光谱仪数据和物理建模,ASO Inc. 绘制了山区积雪深度、雪水当量和雪反照率。这是
• 在任何时刻,所有用户(移动用户)都在一个编号的无线电小区中工作 • 小区的无线电属性包括传播覆盖和多径效应 • 小区是按照特定规划安排布局的大量小区之一,由小区群组成 • 分配给群中每个小区的频率在其他群中重复使用 • 因此,移动用户在工作时会同时受到同信道和相邻信道干扰 • 移动用户必须在控制所有小区运行的固定电信网络上注册 • 网络可以帮助移动用户在移动时从一个小区切换到另一个小区 • 为了管理漫游,移动用户必须不断地向固定网络发送信号和从固定网络接收信号 • 消息通道是双工的,可以是语音或数据 • 蜂窝网络可以与公共电话网络互连 • 移动电话必须具有频率灵活性、携带电池并具有识别号码
摘要本文采用量子机学习技术来通过使用一种称为量子储层计算(QRC)的方法来预测移动用户在移动无线网络中的传播。移动用户的轨迹预测属于时间信息处理的任务,这是一个移动性管理问题,对于自我组织和自主6G网络至关重要。我们的目标是使用QRC准确预测无线网络中移动用户的未来位置。为此,作者使用真正的世界时间序列数据集来建模移动用户的轨迹。QRC方法具有两个组件:储层计算(RC)和量子计算(QC)。在RC中,训练比简单复发性神经网络的训练更有效,因为在RC中,只有输出层的权重才能训练。RC的内部部分是所谓的储层。为了使RC表现良好,应仔细选择储层的权重以创建高度复杂和非线性动力学。QC用于创建这种动态储层,该储层将输入时间序列映射到由动态状态组成的较高维度计算空间中。获得高维动力状态后,进行简单的线性回归以训练输出权重,因此,可以有效地对移动用户轨迹的预测进行有效形成。在这项研究中,我们根据量子系统的哈密顿时间演变采用QRC方法。作者使用基于IBM Gate的量子计算机模拟了时间演变,并且在实验结果中,它们表明,使用QRC仅使用少数量子器来预测移动用户的轨迹是有效的,并且可以超过经典方法,例如长期短期内存方法和echo -echo state网络接近。
图 1:MUOS 卫星、地面系统、波形和兼容用户终端 5 图 2:陆军士兵使用与移动用户目标系统兼容的便携式终端 6 图 3:移动用户目标系统 (MUOS) 初始 (IOC) 和全面作战能力 (FOC)、终端部署和卫星发射日期的原始和实际能力交付日期 9 图 4。联合能力整合与发展系统流程的要素 23 缩写 AN/ARC 陆军海军机载无线电通信 AN/PRC 陆军海军便携式无线电通信 AOA 替代方案分析 CJCS 参谋长联席会议主席 DMR 数字模块化无线电 DOD 国防部 DOT&E 作战测试与评估主任 FOC 全面作战能力 GHz 千兆赫 HMS 手持、背负和小型化 IOC 初始作战能力 JCIDS 联合能力整合与发展系统 JROC 联合需求监督委员会 JTRS 联合战术无线电系统 MDAP 重大国防采购计划MHz 兆赫 MUOS 移动用户目标系统 SATCOM 卫星通信 UHF 超高频 USASMDC 美国陆军太空与导弹防御司令部
图 1:MUOS 卫星、地面系统、波形和兼容用户终端 5 图 2:陆军士兵使用与移动用户目标系统兼容的便携式终端 6 图 3:移动用户目标系统 (MUOS) 初始 (IOC) 和全面作战能力 (FOC)、终端部署和卫星发射日期的原始和实际能力交付日期 9 图 4。联合能力整合与发展系统流程的要素 23 缩写 AN/ARC 陆军海军机载无线电通信 AN/PRC 陆军海军便携式无线电通信 AOA 替代方案分析 CJCS 参谋长联席会议主席 DMR 数字模块化无线电 DOD 国防部 DOT&E 作战测试与评估主任 FOC 全面作战能力 GHz 千兆赫 HMS 手持、背负和小型化 IOC 初始作战能力 JCIDS 联合能力整合与发展系统 JROC 联合需求监督委员会 JTRS 联合战术无线电系统 MDAP 重大国防采购计划MHz 兆赫 MUOS 移动用户目标系统 SATCOM 卫星通信 UHF 超高频 USASMDC 美国陆军太空与导弹防御司令部
图 1:MUOS 卫星、地面系统、波形和兼容用户终端 5 图 2:陆军士兵使用与移动用户目标系统兼容的便携式终端 6 图 3:移动用户目标系统 (MUOS) 初始 (IOC) 和全面作战能力 (FOC)、终端部署和卫星发射日期的原始和实际能力交付日期 9 图 4。联合能力整合与发展系统流程的要素 23 缩写 AN/ARC 陆军海军机载无线电通信 AN/PRC 陆军海军便携式无线电通信 AOA 替代方案分析 CJCS 参谋长联席会议主席 DMR 数字模块化无线电 DOD 国防部 DOT&E 作战测试与评估主任 FOC 全面作战能力 GHz 千兆赫 HMS 手持、背负和小型化 IOC 初始作战能力 JCIDS 联合能力整合与发展系统 JROC 联合需求监督委员会 JTRS 联合战术无线电系统 MDAP 重大国防采购计划MHz 兆赫 MUOS 移动用户目标系统 SATCOM 卫星通信 UHF 超高频 USASMDC 美国陆军太空与导弹防御司令部
图 1:MUOS 卫星、地面系统、波形和兼容用户终端 5 图 2:陆军士兵使用与移动用户目标系统兼容的便携式终端 6 图 3:移动用户目标系统 (MUOS) 初始 (IOC) 和全面作战能力 (FOC)、终端部署和卫星发射日期的原始和实际能力交付日期 9 图 4。联合能力整合与发展系统流程的要素 23 缩写 AN/ARC 陆军海军机载无线电通信 AN/PRC 陆军海军便携式无线电通信 AOA 替代方案分析 CJCS 参谋长联席会议主席 DMR 数字模块化无线电 DOD 国防部 DOT&E 作战测试与评估主任 FOC 全面作战能力 GHz 千兆赫 HMS 手持、背负和小型化 IOC 初始作战能力 JCIDS 联合能力整合与发展系统 JROC 联合需求监督委员会 JTRS 联合战术无线电系统 MDAP 重大国防采购计划MHz 兆赫 MUOS 移动用户目标系统 SATCOM 卫星通信 UHF 超高频 USASMDC 美国陆军太空与导弹防御司令部