摘要背景:基因设计的嵌合抗原受体(CAR)T淋巴细胞是有希望的癌症治疗工具。目前批准了四种汽车T细胞药物,包括Tisagenlecleucel(Tisa-Cel)(Tisa-Cel)和Axibabtagene-Ciloleucel(AXI-CEL),所有靶标CD19都被批准用于治疗B细胞恶性肿瘤。流式细胞仪(FC)仍然是使用重组生物素化靶蛋白的单层CAR T细胞的标准。尽管如此,需要其他工具,而挑战是开发一种简单,相关,高度敏感,可重现和廉价的检测方法。分子工具可以满足这种需求,以特别监视长期持续的汽车T细胞。方法:基于2个实验性CAR T细胞构建体IL-1RAP和CS1,我们设计了2个定量数字液滴(DDPCR)PCR分析。通过针对4.1BB/CD3Z(28BBz)或28/CD3Z(28Z)结面积,我们证明PCR分析可以应用于经过批准的CD19 CAR T药物。28Z和28BBZ DDPCR分析允许确定每个单元格的平均矢量拷贝数(VCN)。我们确认VCN取决于感染的多样性,并证实了我们的实验性或GMP样IL-1RAP CAR T细胞的VCN是否满足了临床部门的要求(<5 VCN/细胞),类似于批准的AXI-CEL或TISA-CEL药物。结果:28BBz和28Z DDPCR测定法应用于2个肿瘤(急性髓样白血病(AML)或多发性骨髓瘤(MM)异种移植物人源化NSG小鼠模型,使我们能够量化早期膨胀(到注射后的T细胞30)。最后,循环汽车T有趣的是,在初始膨胀之后,当肿瘤挑战循环的CAR T细胞时,我们注意到了第二个膨胀阶段。对骨髓,脾脏和肺的研究表明,在先前注射白血病细胞系的小鼠中,在这些组织中散布更多的CAR T细胞。
建议依维莫司的治疗药物监测(TDM),以防止与服药不足有关的排斥风险,并最大程度地减少与上层面暴露有关的毒性作用[1]。可以使用两种主要方法进行此监测:具有基于质谱的分析检测的色谱程序,这些分析检测是对母体特异的,并且使用特定的抗体 - 抗原反应进行免疫测定,这些反应对与药物代谢物的交叉反应性敏感[2]。然而,从临床角度来看,测定之间的偏差可能会使人混淆,并导致调整依维莫司剂量的错误。国际治疗药物监测和临床毒理学免疫抑制药物科学委员会建议在理论值为1.0的10%以内的线性回归坡度,而线性回归截距则在零以截然不同的情况下截然不同[3]。
结果:我们的结果表明,对三种根瘤菌的接种并没有增强植物总生物量,而它显着影响了植物建筑,生态生理学和代谢反应。与JP根瘤菌组接种的接种导致根生物量显着增加,从而导致较小的叶子和较高的叶子数。这些形态学的变化表明,改善了取水和温度调节策略。此外,在接种了来自PJ和PL的微生物组的植物中观察到了不同的气孔电导模式,表明对干旱胁迫的反应发生了改变。代谢组分析表明,根瘤菌的移植显着影响了S. officinalis的叶片代谢组。所有三个根瘤菌促进了酚类化合物,萜类化合物和生物碱的积累,已知在植物防御和应激反应中起着至关重要的作用。五个分子(Genkwanin,β-离子酮,苏莫醇,β-贝氏蛋白贝苯胺A-甲基酯和cinnamoyl-beta-d-d-葡萄糖苷)通常积聚在接种的鼠尾草叶片中,与微生物组无关。此外,根据特定的接种根瘤菌组观察到独特的代谢改变,强调了植物 - 微生物相互作用的专业性质,并可能将这些特定分子用作监测有益微生物的募集的生物标志物。
干细胞移植已成为再生医学的基石,因为它能够分化为各种细胞类型及其在免疫调节,治疗免疫学疾病和血液学恶性肿瘤中的潜在应用(1)。在各种干细胞类型中,多能胚胎干细胞(ESC)和多能干细胞(ASC)的分化潜力进行了广泛的研究。ESC具有较高的多能性,使它们能够在人体中产生任何细胞类型。然而,围绕其使用的伦理问题导致人们更加关注替代来源,例如诱导的多能干细胞(IPSC)和ASC,包括间质干细胞(MSC),神经干细胞(NSC)和血肿干细胞(HSC)。MSC通过调节T,B,天然杀伤(NK)和树突状细胞来显示免疫调节作用,使其成为自身免疫和炎症性疾病的有前途的工具(2,3)。来自人类脐带血的HSC已广泛用于造血和免疫相关疾病的移植疗法中(4)。HSC移植(HSCT)取得成功,取决于归宿,迁移,植入,自我更新和分化。这些复杂的过程受生长因子,细胞因子和利基相互作用的调节。尽管HSCT具有治疗潜力,但诸如移植物抗宿主病(GVHD),移植排斥和可变的患者结局等挑战持续存在。正在探索诸如免疫耐受性诱导和遗传的策略以及治疗修饰,以增强干细胞的存活和整合(5-8)。正在探索诸如免疫耐受性诱导和遗传的策略以及治疗修饰,以增强干细胞的存活和整合(5-8)。最近的进步表明,将计算模型与免疫数据集成为改善干细胞移植的新途径(9)。机器学习模型可以鉴定重新生成医学中涉及自我更新和谱系规范的关键转录因子和基因网络(10,11)。这些方法还促进了健康干细胞和癌症干细胞(CSC)的比较,这有助于开发恶性肿瘤的靶向疗法(12,13)。免疫学研究主题的前沿,“使用计算建模改善干细胞移植交付”典范这种跨学科方法,并在一系列编译的文章中汇集了开创性的研究,从而贡献了独特的
微生物群移植是管理植物性疾病的强大工具。这项研究研究了微生物群移植对棉叶毛皮疾病(CLCUD)抗性的影响,该物种长度良好,但对生物胁迫的敏感性很高。分析了抗clcud抗性物种gossypium arboreum的v3-v4 16S rRNA基因扩增子,来自根际和腓骨层的微生物馏分以及易感棉花品种。已经确定了与疾病抗性相关的独特细菌分类群。进行了种间和种内微生物群移植,然后进行CLCUD发病率分析。可以看出,从G. arboreum fdh228中移植的根际微生物群体显着抑制了G. hirsutum品种中的Clcud,表现优于外源水杨酸的施用。虽然浮游移植也降低了疾病的发生,但它们的效率不如根际移植。差异表达分析DESEQ2用于识别与Clcud抑制相关的关键细菌属,包括pseudoxanthomonas和stenotrophomonas在G. arboreum fdh228的根际中。功能途径分析揭示了耐受物种中应力反应和代谢的上调。转录组学揭示了与蛋白质磷酸化和种间根际微生物群移植中有关的基因上调。这项研究强调了微生物群移植是一种可持续的方法,用于控制CLCUD以及有助于Clcud耐药性的特定微生物和遗传机制。
肝细胞癌(HCC)是瑞士和全球最常见的肝癌类型。通过免疫检查点抑制剂(ICI)结合肝移植的免疫疗法(见下文)可能构成治疗晚期阶段的解决方案。他们的组合可能会导致某些患者的这种癌症的总缓解。但是,到目前为止,免疫疗法已被认为是主要风险,因为它会导致移植物损失和移植排斥率的增加。一项由日内瓦大学(HUG)和日内瓦大学(Unige)(UNIGE)协调的国际研究表明,在停止ICI治疗和肝脏移植之间至少有50天的间隔可以大大降低这种拒绝风险。在肝病学上发表的这些结果是受影响患者的巨大希望的来源。
对HCT的心理干预措施的先前研究受到限制[9,10]。在2016年的荟萃分析中,认知行为疗法(CBT)干预措施通常具有最大的影响;然而,效应大小很小,效果较大的研究缺乏方法论[11]。此外,过去的研究主要集中于减少移植后HCT患者或护理人员的生活质量[12-14],但少数例外(例如[15])。研究使患者和护理人员参与前移植前(例如[16])时,他们的重点是改善护理人员的痛苦和生活质量,而不是建立患者对治疗的弹性或提高能力以遵循治疗建议,以优化移植成果的结果(例如,每日身体活动[17])。
肝细胞癌(HCC)是瑞士和全球最常见的肝癌类型。通过免疫检查点抑制剂(ICI)结合肝移植的免疫疗法(见下文)可能构成治疗晚期阶段的解决方案。他们的组合可能会导致某些患者的这种癌症的总缓解。但是,到目前为止,免疫疗法已被认为是主要风险,因为它会导致移植物损失和移植排斥率的增加。一项由日内瓦大学(HUG)和日内瓦大学(Unige)(UNIGE)协调的国际研究表明,在停止ICI治疗和肝脏移植之间至少有50天的间隔可以大大降低这种拒绝风险。在肝病学上发表的这些结果是受影响患者的巨大希望的来源。
HSCT中的护理需要高水平的专业化,并伴随着多方面的挑战,包括心理压力,情绪疲惫和道德困境。HSCT涉及通过强化化疗和全身辐射来破坏患者的骨髓功能,然后将造血干细胞移植以恢复血细胞的产生(Kanda,2015年)。1974年在日本引入的,每年进行5,500多个程序。然而,威胁生命的风险,例如移植物抗宿主病(GVHD)和严重感染(日本造血细胞移植数据中心,2023年)。
在POD 16上启动除纤维肽,从而导致胆红素水平逐渐下降(POD 22从22.2 mg/dL到2.4 mg/dl),表明治疗反应。但是,血小板减少症和胃肠道出血需要剂量中断。支持性护理包括液体管理,白蛋白输注和利尿剂,但开发了肝素综合征,需要连续的肾脏替代疗法(CRRT)。在POD 27上,她出现了急性缺氧呼吸衰竭,需要高流量的鼻套管和后来的加压剂支持,以使血液动力学不稳定恶化。尽管加强了重症监护措施,包括广谱抗菌素和输血支持,但她的病情恶化,导致了渐进的多机器人失败并过渡到POD 34的舒适护理。