(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.25.640019 doi:Biorxiv Preprint
Scilifelab古代DNA单元专门研究降解DNA的分析,并且随着该项目,该单元正在开发与植物DNA有关的专业知识和服务。也包括在该项目中,并且是有关生物多样性,种群遗传学和进化的丰富信息来源。
仅在欧洲死亡的一半是由于CVD造成的。 [2]此外,可以肯定的是,到2030年,CVD的年度全球死亡率将增加到2330万。 [3]因此,这需要敦促在治疗和预防此类疾病的策略方面取得进步。 因此,高度要求最先进的血管替代品(合成血管移植物)的发展。 CVD有各种各样的治疗和预防策略,涵盖了改变食物和生活方式的事件到药物和医疗程序。 [4,5]一种治疗此类疾病的临床方法是基于血管移植物,可以将其细分为自体移植和艺术移植物。 [4]尽管有很多缺点,但血管自体移植是金标准治疗方法。 基于自体的方法的主要缺点之一是有限的可用性。 [4,6]合成血管移植物,可以大量生产并可以解决自体移植可用性有限的问题,在治疗直径> 6 mm的血管方面表现出足够的临床有效性。 [4,6,7]但是,小直径(Ø<6 mm)合成血管移植物的有效性有限。 这是由于低通畅率和再狭窄的原因,原因是多种原因,例如转移时缺乏细胞相互作用。 [6-10]除此之外,此类移植物内表面的细胞播种对于防止血栓形成至关重要,仍然是一个挑战。 [7,9,10,12]仅在欧洲死亡的一半是由于CVD造成的。[2]此外,可以肯定的是,到2030年,CVD的年度全球死亡率将增加到2330万。[3]因此,这需要敦促在治疗和预防此类疾病的策略方面取得进步。因此,高度要求最先进的血管替代品(合成血管移植物)的发展。CVD有各种各样的治疗和预防策略,涵盖了改变食物和生活方式的事件到药物和医疗程序。[4,5]一种治疗此类疾病的临床方法是基于血管移植物,可以将其细分为自体移植和艺术移植物。[4]尽管有很多缺点,但血管自体移植是金标准治疗方法。基于自体的方法的主要缺点之一是有限的可用性。[4,6]合成血管移植物,可以大量生产并可以解决自体移植可用性有限的问题,在治疗直径> 6 mm的血管方面表现出足够的临床有效性。[4,6,7]但是,小直径(Ø<6 mm)合成血管移植物的有效性有限。这是由于低通畅率和再狭窄的原因,原因是多种原因,例如转移时缺乏细胞相互作用。[6-10]除此之外,此类移植物内表面的细胞播种对于防止血栓形成至关重要,仍然是一个挑战。[7,9,10,12][11]由于合成血管移植物的显着抽签以及自体血管移植物的可用性有限,组织工程(TE)和生物生物生物策略已成为熟练方法的有希望的替代方法。因此,制造血管移植物的最先进的当前策略是基于新颖的生物生物生物生物技术,例如3D(BIO)打印。
MAAT013,一种免疫抑制剂弹药剂,用于恢复微生物组并治疗AGVHD:类固醇依赖性与类固醇 - 难治性患者的AGVHD反应
摘要:植物激素又称植物生长调节剂,可调节植物的各种生理过程,包括发芽、生长以及对生物和非生物胁迫的反应。由真菌、细菌和病毒等病原体引起的植物疾病通常会改变激素途径,导致植物中同时诱导拮抗激素和协同激素。然而,在抗性品种中,激素反应遵循更连续的模式。植物激素信号通路主要沿着两个拮抗轴极化:一侧是水杨酸 (SA) 和茉莉酸 (JA) 途径,另一侧是乙烯途径。除了 SA、JA 和乙烯之外,其他生长调节剂,如生长素、油菜素类固醇、细胞分裂素和脱落酸 (ABA),也在植物对生物胁迫的反应中发挥重要作用,并且因其在植物-病原体相互作用中的重要性而越来越受到重视。病原体可以调节激素的生物合成和信号传导,从而抑制植物的防御能力并改变细胞环境,促进其感染和增殖。在本文中,我们将回顾对植物激素的功能和调节、植物防御反应的调节以及植物激素与防御途径之间的协同作用和串扰的最新进展。
低碳方法的农业构成了应对全球气候变化挑战的关键措施。在农业生态系统中,根际的显着参与调节氮(N)循环,并促进植物与土壤微生物之间的地下化学通信,以减少温室气体(GHGS)的直接和间接排放,并从耕种地点进入自然水体。Here, we discuss speci fi c rhizosphere exudates from plants and microorganisms and the mechanisms by which they reduce N loss and subsequent N pollution in terrestrial and aquatic environments, including biological nitri fi cation inhibitors (BNIs), biological deni- tri fi cation inhibitors (BDIs), and biological denitri fi cation promoters (BDPs).我们还强调了与根部和水生环境中的根茎相关的有希望的应用程序和挑战。
摘要:研究表观遗传调控与抗生物胁迫之间的关系为植物保护和作物改良提供了替代方法。为了阐明番茄对灰葡萄孢菌的反应机制,我们进行了染色质免疫沉淀 (ChIP) 分析,结果显示沿着早期诱导基因 SlyDES、SlyDOX1 和 SlyLoxD(编码氧化脂质途径酶)以及 SlyWRKY75(编码激素信号转录调节剂)的 H3K9ac 标记增加。这种组蛋白标记比之前研究的 H3K4me3 分布更为明显。RNAPol-ChIP 分析反映了与组蛋白修饰增加相关的实际基因转录。抗 P. syringae 的氧化脂质相关基因中标记的不同模式支持病原体特异性谱,而 SlyWRKY75 中没有出现显著差异。内含子结合 miR1127-3p 对 SlyWRKY75 的表观遗传调控得到了对照植物中 SlyWRKY75 前 mRNA 存在的支持。有趣的是,研究发现,在 B. cinerea 和 P. syringae 的响应下,mRNA 会积累,而 miRNA 的减少只发生在 B. cinerea 上。内含子区域呈现出与两种致病系统中的基因其余部分相似的标记模式,B. cinerea 上的 miRNA 结合位点的 H3K4me3 除外。我们定位了编码 Sly-miR1127-3p 的基因,该基因在 B. cinerea 的启动子上呈现出降低的 H3K4me3。
也不适合澳大利亚发现自己的人才竞争日益激烈的全球种族。对于移民和雇主来说,这太复杂了,签证等待时间通常过多,并且在移民和雇主之间存在一种看法,即该系统缺乏公平和透明度。ICT系统并不总是提供简单友好的体验。有一种危险,即我们最需要的技能的移民可能会将注意力转移到具有更好管理系统的其他国家。
随着集成电路工艺的不断发展,锁相环 (PLL) 频率源技术被广泛应用于各类传感器,如用于图像传感器的高精度时钟发生器[1–4]。近年来,得到广泛研究的高精度传感器,特别是植入式医疗传感器和高精度图像传感器,要求低功耗、大输出功率、低相位噪声[5]。作为传感器的关键模块,PLL 的性能在一定程度上决定了传感器的性能。电荷泵锁相环 (CPPLL) 因其低相位噪声、变相位差和高频工作等特点而成为 PLL 的代表性结构[6–8]。已经发表了许多关于 CPPLL 的研究成果,如[9–14]。在[11]中,采用 65nm Si CMOS 工艺实现了 CPPLL。提出的 CPPLL 采用了一种新型超低压电荷泵。所提出的CPPLL工作频率为0.09 GHz~0.35 GHz,在1 MHz频偏处相位噪声为-90 dBc/Hz,电路功耗约为0.109 mW。[9]提出了一种基于GaAs pHEMT的PLL,采用多种电路技术组合对所提出的PLL进行优化,降低相位噪声,提高运行速度。所提出的PLL工作频率约为37 GHz,在1 MHz频偏处相位噪声为-98 dBc/Hz,电路功耗约为480 mW。从以上参考文献可以看出,GaAs pHEMT具有高增益、优异的功率特性、低噪声的特点[15 – 17]。采用GaAs pHEMT工艺可以实现低噪声、更高输出功率的PLL,但基于GaAs pHEMT工艺的电路在实现更高频率的同时引入了较大的功耗,而基于GaAs pHEMT工艺的CPPLL设计存在诸多困难。另外,CPPLL的设计需要在相位噪声、功耗、面积、工艺等性能问题上做出妥协。因此,本文提出了一种基于0.15μm GaAs的改进结构CPPLL。