* 所示价格如有变动,恕不另行通知。请确保电子移液器已充满电。请勿发送充电器支架。交货时间:服务中心为 72 小时(Multi ALL 计划、带有 EMO 或定制订单的 Plan B 除外)。 *** 合规状态不包括不确定性的测量。帐号:可在发票上找到。基本计划:在所有低容量和高容量渠道上进行验证,无需证书。
摘要:适体功能化的生物传感器在监测复杂环境中的神经递质方面表现出高选择性。我们将纳米级适体修饰的纳米移液器传感器转化为检测体外和离体内源性多巴胺的释放。这些传感器采用具有纳米级孔(直径约 10 纳米)的石英纳米移液器,其用适体功能化,从而能够通过目标特定的构象变化选择性捕获多巴胺。多巴胺结合后适体结构的动态行为导致纳米孔内表面电荷的重排,从而导致可测量的离子电流变化。为了实时评估传感器性能,我们设计了一个流体平台来表征纳米移液器传感器的时间动态。然后,我们通过在生物环境中部署用非特异性 DNA 修饰的对照传感器以及多巴胺特异性传感器来进行差异生物传感。我们的研究结果证实了适体修饰的纳米移液器可用于直接测量未稀释的复杂流体,特别是在人类诱导多能干细胞衍生的多巴胺能神经元的培养基中。此外,传感器植入和急性脑切片中的重复测量是可能的,这可能是由于纳米级 DNA 填充孔内的受保护传感区域,最大限度地减少了非特异性干扰物的暴露并防止堵塞。此外,背外侧纹状体通过电刺激释放的内源性多巴胺的差异记录表明适体修饰的纳米移液器具有以前所未有的空间分辨率和减少的组织损伤进行体外记录的潜力。关键词:生物传感器、DNA、多巴胺、流体学、诱导多能干细胞衍生的神经元、纳米孔■简介
系统组件....................... ... 11 Neon™ NxT 单通道移液器工作站..................................................................................................................................................................................................................................................................................................................................................................................................................................13 Neon™ NxT 单通道移液器..................................................................................................................................................................................................................................................................................................................................................................................................................................................13 Neon™ NxT 8 通道移液器工作站..................................................................................................................................................................................................................................................................................................................................................................................................................13 Neon™ NxT 8 通道移液器工作站.................................................................................................................................................................................. .................................................................................................................................................................................................................................................................................................................................. 15 Neon™ NxT 8 通道移液器.................................................................................................................................................................................................................................................................................................................................................................................................. 16 Neon™ NxT 套件.................................................................................................................................................................................................................................................................................................................................................................................. 16 Neon™ NxT 套件.................................................................................................................................................................................................................................................................................................................................................................. ..................................................................................................................................................................................................................................................................................................18 Neon™ NxT 尖端..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................18 Neon™ NxT 1 通道管.................. ... ........................................................................................................................................................................................................................................................................19 Neon™ NxT 8 通道管.......................................................................................................................................................................................................................................................................19
由于纳米移液器的内壁带负电,纳米移液器内部液体中的阳离子等离子形成离子层。当施加比接近时更高的电压时,离子层会向纳米移液器尖端移动。离子层的移动使纳米移液器中的液体移动(电渗流),并注入细胞中。
各种高精度仪器,用于在大量应用中可靠地测量、计量、转移、分配和注射液体。手动和电子微量移液器、单通道和多通道移液器、重复式移液器、分配器、手动和电子移液器控制器、可重复使用的注射器及其配件构成了该计划的核心。每台精密仪器都有自己的序列号,并通过了严格的性能控制,并由单独的 QC 证书证明。
污染。5.2. 接下来,小心不要倾斜滤瓶,因为它现在上重下轻。6. 使用 50 mL 血清移液器,将 250 mL FBS 转移到 DMEM 中。丢弃移液器。7. 使用 25 mL 血清移液器,将 50 mL DMSO 转移到 DMEM/FBS 中。丢弃移液器。7.1. 确保最后添加 DMSO,因为如果先添加,它会溶解过滤器。8. 将真空软管连接到过滤器侧面的喷嘴上,然后打开真空。9. 一旦所有培养基都过滤到底部瓶子中,拧下过滤器并将其丢弃在生物危害垃圾中。10. 使用 50 mL 移液器,将 50 mL 冷冻培养基分装到十个 50 mL 锥形管中。11. 在管子上贴上培养基配方、培养基制作日期和有效期的标签。 这
气垫原理(空气置换)气垫移液器由执行实际测量的活塞-气缸系统组成(图1)。气垫将吸入塑料尖端的样品与移液器内的活塞隔开。活塞向上运动会在尖端产生部分真空,从而将液体吸入尖端。活塞移动的气垫就像一个弹性弹簧,尖端中的液体体积由此悬浮。由于该空气体积的膨胀,活塞移动的体积约为比所需吸入的液体体积大 2% 至 4%。这种膨胀通过考虑死体积和移液器尖端的提升高度的系数来补偿。气垫移液器必须通过设计措施尽量减少温度、气压和湿度的影响,以免影响分液精度。
气垫原理(空气置换)气垫移液器由执行实际测量的活塞-气缸系统组成(图 1)。气垫将吸入塑料吸头的样品与移液器内的活塞隔开。活塞向上运动会在吸头中产生部分真空,从而将液体吸入吸头。活塞移动的气垫就像一个弹性弹簧,吸头中的液体体积由此悬浮。由于该空气体积的膨胀,活塞移动的体积比所需吸入的液体体积大约大 2% 到 4%。这种膨胀通过考虑死体积和移液器吸头的提升高度的系数来补偿。必须通过设计措施将温度、气压和湿度对气垫移液器的影响降至最低,以免影响分配精度。
6. 用 2 mL 电解缓冲液填充 Neon NxT 管(对于 10 μ L Neon NxT 吸头,使用缓冲液 E10)。 7. 将 Neon NxT 管插入 Neon NxT 移液器站。 8. 在设备上设置所需的电穿孔方案和脉冲条件。 9. 将预热的细胞培养板从培养箱移到生物安全柜 10. 要将 Neon NxT 吸头插入 Neon NxT 移液器,请按下移液器上的按钮至第二档以打开夹子。 11. 按照下面的板图或表格对样品进行电穿孔。移取样品溶液,将移液器停靠在站上,然后应用相应的电穿孔方案(11a)。每次电穿孔运行完成后,将样品转移到