MACOM Technology Solutions Inc.(“MACOM”)。保留所有权利。这些材料与 MACOM 的产品一起提供,作为对其客户的服务,仅供参考。除其销售条款和条件或任何单独协议中规定外,MACOM 不承担任何责任,包括 (i) 这些材料中的错误或遗漏;(ii) 未能更新这些材料;或 (iii) 因未来更改规格和产品描述而引起的冲突或不兼容性,MACOM 可能随时进行此类更改,恕不另行通知。这些材料不授予任何知识产权明示或暗示的许可。这些材料按“原样”提供,不提供与销售和/或使用 MACOM 产品相关的任何明示或暗示的保证或责任,包括针对特定用途的适用性、适销性、侵犯知识产权、准确性或完整性,或因使用这些材料而导致的特殊、间接、偶发或后果性损害。MACOM 产品不适用于医疗、救生或维持生命的应用。MACOM 客户使用或销售 MACOM 产品用于此类应用时,自行承担风险,并同意对因此类不当使用或销售而造成的任何损害向 MACOM 进行全额赔偿。
MACOM Technology Solutions Inc.(“MACOM”)。保留所有权利。这些材料与 MACOM 的产品一起提供,作为对其客户的服务,仅供参考。除其销售条款和条件或任何单独协议中规定外,MACOM 不承担任何责任,包括 (i) 这些材料中的错误或遗漏;(ii) 未能更新这些材料;或 (iii) 因未来更改规格和产品描述而引起的冲突或不兼容性,MACOM 可能随时进行此类更改,恕不另行通知。这些材料不授予任何知识产权明示或暗示的许可。这些材料按“原样”提供,不提供与销售和/或使用 MACOM 产品相关的任何明示或暗示的保证或责任,包括针对特定用途的适用性、适销性、侵犯知识产权、准确性或完整性,或因使用这些材料而导致的特殊、间接、偶发或后果性损害。MACOM 产品不适用于医疗、救生或维持生命的应用。MACOM 客户使用或销售 MACOM 产品用于此类应用时,自行承担风险,并同意对因此类不当使用或销售而造成的任何损害向 MACOM 进行全额赔偿。
摘要 — 本文介绍了一种采用 65 nm CMOS 技术的数字可编程双向 7 位无源移相器。该无源矢量合成移相器的核心是混合正交发生器 (HQG)、级间匹配网络和无源矢量调制器 (PVM)。本文提出了一种基于高耦合因子的正交发生器设计方法,并用紧凑型垂直变压器进行了演示。提出了 HQG 和 PVM 之间的级间匹配网络,以释放带宽瓶颈并实现 34% 的分数频率带宽。I 和 Q 路径中的两个 6 位 X 型衰减器形成高分辨率 12 位控制字。在 32-40 GHz 下,这个 7 位 360 ◦ 移相器实现了测量的 2.8 ◦ 步长,相位误差为 0.45-1.6 ◦ RMS,幅度误差为 0.2-0.36 dB RMS。采用宽带技术,其3dB带宽达到30.2-42.7GHz,相位误差为2.8◦RMS。其带内1dB压缩点为10.2dBm。采用所提出的紧凑型HQG和PVM,该毫米波无源移相器仅占用220×630μm2,并且没有功耗。
3 位移相器。天线波束控制利用 32 个移相器执行,这些移相器为每个天线元件提供必要的电相移。该设计是 3 位实现,允许 45 英寸相位步进。电路中包含一个用于圆极化的正交化网络。每个移相器都使用传统的表面贴装元件构建在印刷微波电路卡上,然后粘合到辐射元件上以形成天线元件模块。移相器按照高可靠性标准制造,没有镀通孔。
3 位移相器。天线波束控制利用 32 个移相器执行,这些移相器为每个天线元件提供必要的电相移。该设计是 3 位实现,允许 45 英寸相位步进。电路中包含一个用于圆极化的正交化网络。每个移相器都使用传统的表面贴装元件构建在印刷微波电路卡上,然后粘合到辐射元件上以形成天线元件模块。移相器按照高可靠性标准制造,没有镀通孔。
雷达系统确定目标的距离、速度和到达角 (AoA)。本研究的重点是 AoA 确定的准确性。目标反射信号的方位角或 AoA 由相控阵系统中每个接收器链信号之间的相位差决定。接收器链之间的固有相移差异是造成不准确的一个原因。因此,为了准确确定 AoA,必须在接收器电路中控制相位变化。校准相位的模拟解决方案通常使用移相器,但有源移相器耗电,无源移相器有损耗且需要很大的面积 [5]。此外,在这些频率下使用移相器实现小于一度的精度非常复杂 [6]。另一种方法是使用
可编程光子集成电路正成为量子信息处理和人工神经网络等应用的一个有吸引力的平台。然而,由于商业代工厂缺乏低功耗和低损耗的移相器,目前的可编程电路在可扩展性方面受到限制。在这里,我们在硅光子代工平台 (IMEC 的 iSiPP50G) 上展示了一种带有低功耗光子微机电系统 (MEMS) 驱动的紧凑型移相器。该设备在 1550 nm 处实现 (2.9 π ± π) 相移,插入损耗为 (0.33 + 0.15 − 0.10) dB,V π 为 (10.7 + 2.2 − 1.4) V,L π 为 (17.2 + 8.8 − 4.3) µ m。我们还测量了空气中的 1.03MHz 的驱动带宽 f − 3 dB。我们相信,我们在硅光子代工厂兼容技术中实现的低损耗和低功耗光子 MEMS 移相器的演示消除了可编程光子集成电路规模化的主要障碍。© 2021 美国光学学会
单片微波集成电路 (MMIC) 和发射/接收 (T/R) 模块被广泛应用于有源阵列雷达等系统。小型无人机平台传感器的开发要求重量轻、尺寸紧凑、成本低和可靠。这些要求导致了使用双面厚膜多层基板封装的高度集成 MMIC 的开发。MMIC 所需的组件包括移相器、衰减器、开关、低噪声放大器 (LNA) 和功率放大器。通过切换发射和接收路径中共享的移相器和衰减器可以实现组件的重复使用。每个完整的 T/R 模块都符合与模块集成的相关天线阵列所要求的半波长间隔约束。
在集总元件 (LE) 配置中驱动电光调制器可实现较小的占用空间、降低功耗并提高高速性能。传统直线 LE 调制器的主要缺点是需要较高的驱动电压,这是由于其移相器较短所致。为了解决这个问题,我们引入了一种具有蛇形移相器的 Mach-Zehnder 调制器 (M-MZM),它可以在 LE 配置中驱动,同时保持光学移相器长度与行波调制器 (TW-MZM) 相同的数量级。需要考虑的设计限制是设备的光学传输时间,它限制了整体电光带宽。首先,我们回顾了与 TW-MZM 相比 LE 调制器的整体功耗改进以及带宽增强,同时还考虑了驱动器输出阻抗和线或凸块键合的寄生效应。然后,我们报告了使用标准 CMOS 兼容工艺在绝缘体上硅 (SOI) 晶片上制造的基于载流子耗尽的 M-MZM 的设计、实现和实验特性。制造的 M-MZM 具有低掺杂 (W1)、中掺杂 (W2) 和高掺杂 (W3) 结,需要 9.2 V pp、5.5 V pp 和 3.7 V pp 才能完全消光,光插入损耗分别为 5 dB、6.3 dB 和 9.1 dB。对于所有三个 M-MZM,使用 50 Ω 驱动器和终端电阻以 25 Gb/s 记录睁眼图。对于无终端电阻的 M-MZM,可以实现更高的数据速率,前提是将低输出阻抗驱动器通过引线或凸块键合到调制器上。最后,我们将 M-MZM 与 TW-MZM 的功耗进行比较,结果显示 M-MZM 在 25 Gb/s 时功耗降低了 4 倍。
• AESA 雷达 • 电信 • 仪器仪表 描述 CGY2170YHV/C1 是一款在 X 波段工作的高性能 GaAs MMIC T/R 6 位核心芯片。该产品有三个 RF 端口,包括三个开关、一个 6 位移相器、一个 6 位衰减器和放大器。它的移相范围为 360°,增益设置范围为 31.5 dB。移相器和第一放大器级之间还有一个电压可变衰减器,用于增益控制。它覆盖的频率范围为 8 至 12 GHz,并在 10 GHz 时提供 5.8 dB 的增益。带有串行输入寄存器的片上控制逻辑最大限度地减少了控制线的数量,并大大简化了该设备的控制接口。该芯片采用 0.18 µm 栅极长度 ED02AH pHEMT 技术制造。 MMIC 采用金焊盘和背面金属化,并采用氮化硅钝化进行全面保护,以获得最高水平的可靠性。该技术已针对太空应用进行了评估,并被列入欧洲航天局的欧洲首选部件清单。