和SR +2以已知诱导超导性超导性的浓度,ND 2 CUO 4和LA 2 CUO 4。Electron doped (La 0.185 Pr 0.185 Nd 0.185 Sm 0.185 Eu 0.185 Ce 0.075 ) 2 CuO 4 and hole doped (La 0.18 Pr 0.18 Nd 0.18 Sm 0.18 Eu 0.18 Sr 0.1 ) 2 CuO 4 are synthesized and shown to be single crystal, epitaxially strained, and highly uniform.传输测量表明,所有生长的薄膜都在绝缘,而不是掺杂。退火研究表明,可以通过修饰氧气化计量和诱导金属性但没有超导性来调整电阻率。这些结果反过来又连接到扩展的X射线吸收良好的结构结果,表明高熵库层中缺乏超导性可能起源于Cu – O平面内的大变形(σ2>0.015Å2),这是由于A-部位阳离子阳离子尺寸变化引起的,这驱动了载货者本地化的本地化。These findings describe new opportunities for controlling charge- and orbital-mediated functional responses in Ruddlesden – Popper crystal structures, driven by balancing of cation size and charge variances that may be exploited for functionally important behaviors such as superconductivity, antiferromagnetism, and metal-insulator transitions while opening less understood phase spaces hosting doped Mott insulators, strange metals, quantum临界,伪胶囊和有序的电荷密度波。
摘要自1911年发现超导性以来,追求高过渡 - 温度(T C)超导体一直是凝结物理学的核心重点。在丘比特和基于铁的超导体中的突破性超过了40 K麦克米兰极限,并将其确定为高温超导体。在2019年,在平面 - 平面无限层镍酸盐薄膜中报道了超导性,尽管t c <40 k。2023年,在高压加工的高压力摄入量下,biLayer ruddlesden-popper(RP)镍的液体氮气 - 温度超导率。在这里,使用巨大的氧化原子层逐层外观(goall-epitaxy)[1],我们报告(LA,PR)3 Ni 2 O 7膜中的环境压力超导性[2],具有40 k的发作t c。超导体 - 绝缘体过渡阶段图[3]。角度分辨光发射光谱(ARPES)测量[4,5]揭示了孔掺杂孔的多轨fermi表面。沿着布里渊区的对角线发现具有颗粒 - 孔对称特性的温度依赖性能隙[6]。这些环境压力镍超导体为揭示高温超导性机制提供了一个新的平台。参考文献[1]国家科学评论,NWAE429(2024)。[2]自然,doi:10.1038/s41586-025-08755-Z(2025)。[3] Arxiv:2502.18068。[4] ARXIV:2501.09255。[5] ARXIV:2501.06875。[6] ARXIV:2502.17831。查询:3943 6303
利用人工智能设计功能性有机分子 用户名:Masato Sumida 1,2 Xiufeng Yang 2 日本理化学研究所实验室隶属关系: 1. 先进智能项目中心富士通协作中心 2. 先进智能项目中心目标导向平台技术研究组分子信息学团队
1。环境评估的背景评估水环境的概念已按照腐生方法,多样性指数和生物指数的顺序发展。污染方法以BOD(生物氧的要求)为例,并使用水质成分分析来评估适合水和工业用途的水。在评估人类清洁水的同时,有时候,清洁水流和动植物可以生存的环境的环境不一致。多样性指标可以通过评估组成平衡和总数来评估基因,物种,生态系统等。另一方面,它需要大量的时间和精力,并且不适合在人类彼此相邻的地方(例如Satoyama)的地方进行评估。生物指标测量有关典型物种的信息,并试图评估环境的良好性,最近有些人使用概念(例如完整性和健康)来评估环境。这些概念还抵消了污染方法和多样性指标的缺点。
离子交换膜(IEM)通常由疏水聚合物基质和离子基组组成,可以根据移植到膜矩阵中的离子基团的类型分类为阴离子交换膜(AEM)和阳离子交换膜(CEMS)。cems用负电荷的组固定(–so 3 - ,–coo-等)进行阳离子但排斥阴离子,而AEM含有带正电荷的组(–NH 3 +,–NRH 2 +,–NR 2 H +,–NR 3 +,PR 3 +,–sr 2 +等。),允许阴离子的渗透,但延迟阳离子[1,2]。IEM的典型聚合物体系结构如图1.1a所示,而典型组如图1.1b所示[3]。根据离子基与聚合物基质的联系,IEM也可以归类为均质和异质膜。在均匀的膜中,带电的组化学键合膜基质,在异质膜中,它们与膜基质物理混合[4]。还有许多其他分类方法,总而言,我们提供了表1.1,列出了IEM的主要类别[5]。