资源的可用性对于一般的价值创造至关重要,对于特定的德国的双胞胎变换而言,资源的可用性紧密整合到一个全球的生产链接网络中。当缺少全球价值链开始时需要原材料时,负面影响沿着生产联系并减少经济活动和贸易。在Covid-19危机开始时出现的供应冲击使这一点尤为明显。1随后,乌克兰战争说明了原材料供应的地缘政治维度。在乌克兰战争过程中实施的制裁以及俄罗斯对能源供应的地缘政治武器化迫使欧盟在其组成和原籍国都在短期内修改其能源进口。在德国和全球的双重过渡到气候中立和数字经济的过渡使原材料安全的问题变得更加重要。需求预计将增长,特别是对于铜等质量金属,以及锂,稀土和钴等特殊金属的需求。在这方面,德国在很大程度上取决于
摘要:稀土是当代社会的重要资源。稀土用途广泛,是风力涡轮机和电动汽车等可持续发展技术的关键组成部分。虽然稀土可以帮助社会从化石燃料过渡到可再生能源并节约能源,但稀土的开采、加工和使用在世界各地,尤其是在中国,造成了严重的环境和社会影响。我们认为,环境正义和代际正义概念可以为这项绿色能源交易提供道德框架。我们调查了稀土生产造成的环境和社会影响,以及生产地理分布的变化,这意味着这些影响分布在世界各地,包括中国国内和国外。最后,我们考虑了矿工、制造商、设计师和用户可以使用的几种策略,以便在现在和将来实现更大的环境正义和代际正义。
稀土发射器已在集成的光学源中研究了一段时间,作为激光源[1]和带有眼镜[2,3]或聚合物[4]的波导放大器。最近,它们被整合到互补的金属氧化物半导体(CMOS)驱动或兼容的SI光子芯片中,作为激光源[5],放大器[6,7]以及调节剂[8,9]。稀土发射器为开发新的主动光学功能的可能性提供了许多可能性,该功能最初集中于第四组[10]或III-V材料[11,12]。然而,需要在硅平台上的有效掺入(例如粘结[13],掩盖沉积[5,14],额外的层[15]或蚀刻[16,17],需要复杂的处理,这对实际应用可能是昂贵且有害的。尤其是Y 2 O 3和Al 2 O 3矩阵的情况,它需要电感耦合等离子体优化的蚀刻[18-20]。在这项工作中,我们提出了稀土掺杂层微发射体的创新设计,而无需使用升降加工与脉冲激光沉积(PLD)结合使用。在通过掩模(例如g。photoresist)的升降过程中,通过蚀刻的经典结构进行了蚀刻的经典结构,但在升降过程中,将材料与沉积的材料一起清除。这种方法比蚀刻更容易,避免沿蚀刻的侧壁潜在损害。尽管非常有吸引力,但提升过程的主要缺点之一是沉积过程中的底物温度。pld允许克服这种限制。升降处理是薄层图案(例如金属)或较厚层的微电子中常规的,具有低温沉积(如溅射)[21],原子层[22]或玻璃沉积[23]。的确,如果底物温度高于200°C(即光固定剂的硬烘烤温度),则提升处理不能成功。PLD是一种通常用于
2022 年,Neo 发现了市场中尚未满足的需求,并启动了该项目,并获得了爱沙尼亚政府在欧洲公正转型基金 (JTF) 计划下高达 1870 万欧元的资助。这笔赠款支持在爱沙尼亚建设一座最先进的烧结稀土永磁体制造工厂。该项目于 2021 年启动,到 2022 年完成选址、详细设计和采购。建设于 2023 年开始,外部工程将于 2024 年 8 月基本完工。该工厂有望在 2025 年初开始生产。该工厂将为我们的欧洲和北美客户提供稀土磁体供应链选择。它将从 Neo 在爱沙尼亚现有的分离设施供应磁性稀土氧化物,该设施是亚洲以外仅有的工业规模中游设施之一。初始产能为每年 2,000 吨烧结稀土磁体,第二阶段将扩大到每年至少 5,000 吨。随着对高标准烧结稀土磁体的需求不断增长,Neo 计划探索建造类似的工厂
mgn 2 o 6·6H 2 o,NH 4 H 2 PO 4,Zrocl2Å8H2 O,ER(NO 3)3Å5H2 O,150 ml Deathis Water,Zroc l2·8H 2 O水溶液
格陵兰岛和经纪与乌克兰的和平协议,其中包括使用乌克兰矿物质和金属。重要的是要注意,格陵兰已经是其广阔的稀土矿物质藏品的争论点,其名称具有非凡的名称,例如dydsprosium,Neododmium,Scandium和Yttrium(有17个稀土矿物质是任何高级技术的核心)。鉴于格陵兰是丹麦的一部分,因此它是欧盟(EU)规则的。在2011年,欧盟发布了一份关键原材料列表,其中包括这些稀土矿物质。然后,在2023年,欧盟通过了《关键原材料法》,该法敦促国内生产这些关键的矿物质和金属以及它们进口到整个大陆。同时,乌克兰拥有巨大的稀土金属(从磷灰石到锆)以及锂和钛的储量。特朗普要求从乌克兰至少有5000亿美元的这些储备作为美国在战争中的支持。“我想拥有稀土安全”,特朗普在2月初告诉记者,听起来像是《指环王》的角色。
在可再生能源存储设备中使用稀土→当今使用可再生能源存储中最广泛部署的技术是锂离子(Li-ion),钠硫磺电池(NAS)和铅酸(PBA)。在这些电池组成中,稀土不会进入,也不是很少的(可能是添加剂)。的常用电池,只有镍金属氢化物(NIMH)电池包括阴极处的稀土合金。这些电池主要用于混合动力汽车和功率操作设备,但是它们用于可再生能源存储的用途将保持非常微不足道,尤其是因为与Li-ion电池相比,它们的成本很高,与Li-ion电池相比,其特性和性能更适合此目的(Ademe,2019年)。
Rainbow 正在南非开发其 Phalaborwa REE 项目,以从磷石膏中回收稀土元素,并选择与 K-Tech 合作采用 CIX/CIC 工艺分离和纯化稀土元素,以生产选定的稀土氧化物产品。这为 K-Tech 提供了一个独特的机会,可以利用其工艺独立于中国生产分离的稀土氧化物,然后销往美国,并允许开发美国下游供应链,包括专用合金、稀土永磁体、传动系统以及最终的电动汽车/风力涡轮机制造。从国防的角度来看,磁铁是国防技术不断创新的驱动力,例如精确制导弹药、坦克导航系统和电子对抗设备。如果没有保证独立的供应,这些投资就无法在美国进行。